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1. Introduction

Math 115A is a course in linear algebra. You might be thinking to yourself: Wait a second —
I already took a course in linear algebra, Math 33A. Why am I taking another one? This is a fair
question, and in this introduction I hope to give you a satisfying answer.

Broadly speaking, there are two main goals of 115A.

(1) Develop linear algebra from scratch in an abstract setting.
(2) Improve logical thinking and technical communications skills.

I’ll discuss each of these goals separately, and you should keep them in the back of your mind
throughout the quarter.

(1) Develop linear algebra from scratch in an abstract setting.

In a lower division linear algebra class like 33A, the subject is usually presented as the study of
matrices, or at the least it tends to come off in this way. In reality, you should think about linear
algebra at the 115A-level as the study of vector spaces and their transformations.

I haven’t told you what a vector space is yet, so currently this sentence should mean very little
to you. To continue saying meaningless things, a vector space is simply a universe in which one
can do linear algebra. We’ll talk about this carefully soon enough, but for now I’ll tell you about
a vector space that you’re already familiar with: Rn, the set of all n-tuples of real numbers. This
is baby’s first vector space, and in a linear algebra class like 33A it’s usually the only vector space
that you encounter. In 115A we will develop the theory of linear algebra in other vector spaces,
which turns out to be a useful thing to do. Here are some examples to convince you that this is a
worthwhile pursuit. I’ll repeat: I haven’t told you what a vector space is, so all of these examples
are only supposed to be interesting stories.

Example 1.1. It turns out that infinite dimensional vector spaces are important and come up
in math all the time. The one vector space you have seen before, Rn, is definitely not infinite
dimensional. For example, consider the partial differential equation called the Laplace equation:

∂2f

∂x2
+

∂2f

∂y2
= 0.

Don’t worry if you don’t know anything about partial differential equations — you can just trust
me that they are important. It turns out that the above equation, and many other differen-
tial equations, can be presented as a transformation of an infinite dimensional vector space! In
particular, the elements of the vector space are the functions f(x, y).

Example 1.2. In a similar vein, you may have heard of the Fourier transform. Here is the Fourier
transform of a function f(x):

F(f)(ξ) =

∫
R
f(x) e−2πiξ dx.

Again, don’t worry if this means nothing to you; just trust me that the Fourier transform is
important. Looking at the above formula — with an integral, an exponential, and imaginary
numbers — it may seem like the Fourier transform is as far from “linear algebra” as possible. In
reality, the Fourier transform is just another transformation of an infinite dimensional vector space
of functions!

Example 1.3. Infinite dimensional vector spaces arise naturally in physics as well. For example,
in quantum mechanics, the set of possible states of a quantum mechanical system forms an infinite
dimensional vector space. An observable in quantum mechanics is just a transformation of that
infinite dimensional vector space. By the way, don’t ask me too many questions about this — I
don’t know anything about quantum physics!
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Example 1.4. Finite dimensional vector spaces that are not Rn are also important. There are
a number of simple examples I could give, but I’ll describe something a little more out there. In
geometry and topology, mathematicians are usually interested in detecting when two complicated
shapes are either the same or different. One fancy way of doing this is with something called
homology. You can think of homology as a complicated machine that eats in a shape and spits out
a bunch of data. Oftentimes, that data is a list of vector spaces. In other words, if S1 and S2 are
two complicated mathematical shapes, and H is a homology machine, you can feed S1 and S2 to
H to get:

H(S1) = {V1, . . . , Vn}
H(S2) = {W1, . . . ,Wn}.

Here, V1, . . . , Vn and W1, . . .Wn are all vector spaces (and they aren’t just copies of Rn). If the
homology machines spits out different lists for the two shapes, then those shapes must have been
different! This might sound ridiculous (because it is ridiculous) but if your shapes live in, like,
345033420 dimensions then it’s usually easier to distinguish them by comparing the vector spaces
output by a homology machine, rather than trying to distinguish them in some geometric way.

My point is that vector spaces of all sizes and shapes are extremely common in math, physics,
statistics, engineering, and life in general, so it is important to develop a theory of linear algebra
that applies to all of these, rather than just Rn. We will approach the subject by starting from
square one. A healthy perspective to take is to forget almost all math you’ve ever done and treat
115A like a foundational axiomatic course to develop a particular field of math. This is the first
goal of 115A.

The last remark about goal (1) that I’ll make is the following. You might be thinking: Wow,
linear algebra in vector spaces other than Rn must be wild and different from what I’m used to!
I can’t wait to learn all of the new interesting theory that Joe is hyping up! If you are thinking
this, then I’m going to burst your bubble and spoil the punchline of 115A: Abstract linear algebra
in general vector spaces is basically the same as linear algebra in Rn. Nothing new or interesting
happens. We will talk about linear independence, linear transformations, kernels and images,
eigenvectors and diagonalization, all topics that you are familiar with in the context of Rn, and
everything will work the same way in 115A.

(2) Improve logical thinking and technical communication skills.

At some level, this goal is a flowery way of referring to “proof-writing”, but I don’t like boiling it
down to something as simple as that. Upper division math (and real math in general) is different
than lower division math because of the focus on discovering and communicating truth, rather than
computation. As such, you should treat every solution you write in 115A (and any other math
class, ever) as a mini technical essay. Long gone are the days where you do scratch work to figure
out the answer to some problem and then just submit that. High level math is all about polished,
logical, and clear communication of truth.

This is difficult to learn to do well and it takes a lot of time and practice!

2. Sets

Before we discuss vector spaces, we need to take care of a few boring preliminaries. The basic
building block of a vector space is something called a field, which is what we will discuss in the
next section. But before even that, I want to introduce you to some notation and basic concepts
that will be central to the entire course. Hopefully you are already familiar with the basic notions
of sets to some extent, so this first subsection will be a brief overview.
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The most fundamental object of interest in all of math is a set. A set is just a collection —
possibly infinite — of things. For example,

S1 = {1, 2,−400}

is a set consisting of the numbers 1, 2, and −400. As another example,

S2 = {blue, :), π}

is a set consisting of the word blue, a smiley face, and the number π.
For larger sets, we will sometimes use the following notation:

S3 = {n : n is a positive, even number}.

This notation is read: S3 is the set consisting of elements of the form n such that n is any positive,
even number. The colon is read as “such that,” and the stuff after the colon is a collection of
conditions that all elements of the set must satisfy. Unraveling the set S3 above,

S3 = {n : n is a positive, even number} = {2, 4, 6, 8, . . . }.

We use the symbol ∈ to indicate if something is an element of a set. For example, recall the set
S1 = {1, 2,−400} from above. We could write

2 ∈ S1

because 2 is an element of S1. We could also write

3 /∈ S1

because 3 is not an element of S1.
We can define operations on sets. For example, if A and B are sets, then we define

A ∪B := {x : x ∈ A or x ∈ B}
A ∩B := {x : x ∈ A and x ∈ B}

The first is the union of the sets A and B, and the second is the intersection. For example, using
S1 and S3 from above,

S1 ∪ S3 = {−400, 1, 2, 4, 6, 8, . . . }
S1 ∩ S3 = {2,−400}.

The empty set, denoted ∅, is the set consisting of no elements. That is, ∅ := { }. We could write

S1 ∩ S2 = ∅.

When two sets have empty intersection, we say that they are disjoint.
We can also discuss subsets. In particular, if A and B are two sets, then we say A ⊂ B (or

A ⊆ B, both notations confusingly mean the same thing) if every element of A is also an element
of B. For example,

{4, 6, e} ⊂ {4, 6, e, 10, 24}.

One thing that you will have to do often in this class, and in life, is show that two sets are the
same. To show A = B, you should show that A ⊂ B and B ⊂ A.
The following are some important sets for this course.



MATH 115A - LINEAR ALGEBRA 5

N := {x : x is a natural number} = {0, 1, 2, 3, . . . }
Z := {x : x is an integer} = {. . . ,−2,−1, 0, 1, 2, . . . }
R := {x : x is a real number}

Q := {x : x is a rational number} =

{
p

q
: p, q ∈ Z, q ̸= 0

}
C := {x : x is a complex number} = {a+ bi : a, b ∈ R}

3. Induction

One of the most useful proof techniques in all of mathematics is induction. Although you might
already know how induction works, many students are not aware when it should be used. We will
introduce induction as a proof technique and focus on identifying characteristics of an induction
problem.

Induction is typically a way of proving a statement we already know to be true that can be
indexed by the natural numbers. At first glance, that might seem restrictive, but sometimes
intuitive claims that are easy to state are extremely difficult to prove (e.g. Goldbach conjecture
or Collatz conjecture). The general idea is to prove the claim for a simple case (the base case).
Then we prove that if the claim is true at some point, it must be true in the next iteration (the
inductive step). The statement is true in each case because it was true in the previous case. We
are able to lump infinitely many proofs (one for each natural number) into a two-step process. We
illustrate the process with a basic example.

Proposition 3.1. For each natural number n, the sum of the first n positive integers is n(n+1)
2

.

Proof. As a base case, we inspect the claim when n = 1. Clearly, 1 = 1·2
2
.

We now attempt the inductive step. Assume that the claim is true for n so 1+2+· · ·+n = n(n+1)
2

.

We will prove that 1 + 2 + · · · + n+ (n+ 1) = (n+1)(n+2)
2

. We start with the assumption and add
n+1 to both sides to obtain the left hand side of the equality we want to prove. We find a common
denominator and factor the numerator on the right hand side to obtain the desired result.

1 + 2 + · · ·+ n =
n(n+ 1)

2

1 + 2 + · · ·+ n+ (n+ 1) =
n(n+ 1)

2
+ (n+ 1)

1 + 2 + · · ·+ n+ (n+ 1) =
n2 + n+ 2(n+ 1)

2

1 + 2 + · · ·+ n+ (n+ 1) =
n2 + 3n+ 2)

2

1 + 2 + · · ·+ n+ (n+ 1) =
(n+ 1)(n+ 2)

2
□

Proposition 3.1 is clearly true for small cases of n. In the inductive step, we show that the next
formula will be true based purely on the previous formula. The process continues forever, proving
the claim for all instances of n.

The discussion thus far has been about weak induction since, in the inductive step, we only use
the previous value for n to prove the next. With strong induction, we actually assume that each
value for n up to the desired value is true. We will illustrate strong induction with the following.
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Proposition 3.2. The Fibonacci sequence is defined by Fn+2 = Fn+1 + Fn for all integers n ≥ 0
with starting values F1 = 1 and F2 = 1. A formula for Fn is given by

Fn =
1√
5

((
1 +

√
5

2

)n

−

(
1−

√
5

2

)n)
.

Proof. We proceed via strong induction on n. As a base case, take n = 1. We have F1 = 1 and

1√
5

(1 +
√
5

2

)1

−

(
1−

√
5

2

)1
 =

1√
5
· 2

√
5

2
= 1.

Now for the inductive step. Assume that

Fn =
1√
5

((
1 +

√
5

2

)n

−

(
1−

√
5

2

)n)
for all n ≤ k. We will show that

Fk+1 =
1√
5

(1 +
√
5

2

)k+1

−

(
1−

√
5

2

)k+1
 .

The formula for the Fibonacci sequence states that Fk+1 = Fk + Fk−1. We also note that(
1±

√
5

2

)2

=
6± 2

√
5

4
=

3±
√
5

2
.

Thus

Fk+1 =
1√
5

(1 +
√
5

2

)k

−

(
1−

√
5

2

)k
+

1√
5

(1 +
√
5

2

)k−1

−

(
1−

√
5

2

)k−1


=
1√
5

(1 +
√
5

2

)k

+

(
1 +

√
5

2

)k−1
− 1√

5

(1−
√
5

2

)k

+

(
1−

√
5

2

)k−1


=
1√
5

(
1 +

√
5

2

)k−1(
3 +

√
5

2

)
− 1√

5

(
1−

√
5

2

)k−1(
3−

√
5

2

)

=
1√
5

(1 +
√
5

2

)k+1

−

(
1−

√
5

2

)k+1


as desired. □

One reason the proof went smoothly is we were able to assume the previous two steps of the
process during the inductive step. Weak induction would not have been enough to prove the
statement in this way.

In a surprising turn of events, strong induction and weak induction are equivalent. We can prove
strong induction works using weak induction and visa versa. As a result, most people use strong
induction and weak induction interchangeably.

End of lecture 1
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4. Fields

Some sets are just simple collections of elements with no extra structure. Other sets naturally
admit an extra amount of structure and interaction (i.e., algebra.) For example, in the set of
integers, Z = {. . . ,−2,−1, 0, 1, 2, . . . }, we are familiar with the algebraic operations of addition
(+) and multiplication (·). That is, given two elements n,m ∈ Z, we can construct a third element
n+m ∈ Z by adding them together, and likewise a fourth element n ·m ∈ Z. Furthermore, these
algebraic operations obey a handful of rules (commutativity, distribution) that you learned when
you were a kid.

In contrast, consider the set S2 = {blue, :), π} from before. We don’t have any familiar algebraic
structure on this set, so for now it will be just be an unstructured collection of random elements.

In Math 115A there is a particular type of set called a field that will be of utmost importance.
It is a set with two operations that satisfy a bunch of rules. I’ll give you the formal definition, and
then we’ll look at some examples.

Definition 4.1. A field is a set F with two operations, addition (+) and multiplication (·), that
take a pair of elements x, y ∈ F and produce new elements x + y, x · y ∈ F . Furthermore, these
operations satisfy the following properties.

(1) For all x, y ∈ F ,

x+ y = y + x

x · y = y · x.
We refer to this property as commutativity of addition and multiplication respectively.

(2) For all x, y, z ∈ F ,

(x+ y) + z = x+ (y + z)

(x · y) · z = x · (y · z)
We refer to this property as associativity of addition and multiplication respectively.

(3) For all x, y, z ∈ F ,

x · (y + z) = x · y + x · z.
We refer to this property as distributivity of multiplication over addition.

(4) There are elements 0, 1 ∈ F such that, for all x ∈ F ,

0 + x = x

1 · x = x.

The element 0 is an additive identity and the element 1 is a multiplicative identity.
(5) For each x ∈ F , there is an element x′ ∈ F , called an additive inverse, such that x+x′ = 0.

Similarly, for every y ̸= 0 ∈ F , there is an element y′ ∈ F , called amultiplicative inverse,
such that y · y′ = 1.

Example 4.2. The main example of a field is R, the set of real numbers, with the usual operations
of addition and multiplication. All of the above properties should look familiar to you, precisely
because they are modeled after the behavior of R. Throughout Math 115A we will work with
abstract fields F , but usually you can secretly think about R in your head.

Example 4.3. Other familiar examples of field are Q and C.

Example 4.4. The set of integers, Z, with the usual operations of addition and multiplication,
is not a field. Almost all of the field properties are satisfied, except for the multiplicative inverse
property. In particular, it is not the case that for any y ̸= 0 ∈ Z, there is a y′ ∈ Z such that
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y · y′ = 1. For example, the element 2 ∈ Z does not have a multiplicative inverse; we know in our
minds that such a number would have to be 1

2
, but that number doesn’t exist in Z.

Similarly, N is not a field. Not only does N not have multiplicative inverses, but it also doesn’t
have additive inverses!

Example 4.5. Here is an example of a field that you may not have seen before. Let F2 := {0, 1}
be the set consisting of 2 elements, 0 and 1. Define addition as

0 + 0 := 0

0 + 1 := 1

1 + 1 := 0,

and define multiplication as

0 · 0 := 0

0 · 1 := 0

1 · 1 := 1.

We claim that F2 is a field! We won’t verify all of the properties, but each element has an additive
inverse (the additive inverse of 0 is 0, and the additive inverse of 1 is 1), and each non-zero element
has a multiplicative inverse (the multiplicative inverse of 1 is 1).

We will now prove some basic properties of fields. Of course, we want to establish some of these
properties, but the main purpose here is to practice writing proofs and to get you in the correct
mindset for the course. There are a lot of algebraic operations that you take for granted in a field,
and we need to prove them using the defining properties.

Proposition 4.6 (Cancellation laws). Let F be a field. Let x, y, z ∈ F .

(i) If x+ y = x+ z, then y = z.
(ii) If x · y = x · z and x ̸= 0, then y = z.

Proof. First, we prove (i). Suppose that x + y = x + z. By Definition 4.1(5), there exists an
element x′ such that x+ x′ = 0. Adding x′ to both sides of the assumed equality gives

x′ + (x+ y) = x′ + (x+ z).

By associativity of addition in a field, this is equivalent to

(x′ + x) + y = (x′ + x) + z.

Using the fact that x′ + x = 0 gives

0 + y = 0 + z ⇒ y = z.

Next, we prove (ii). Suppose that x · y = x · z and x ̸= 0. By Definition 4.1(5), there is an
element x′ such that x′ · x = 1. Multiplying both sides of the assumed equality,

x′ · (x · y) = x′ · (x · z).
By associativity of multiplication, it follows that

(x′ · x) · y = (x′ · x) · z
so

1 · y = 1 · z ⇒ y = z.

□

As a corollary, we get another fact that you have also taken for granted (and is not directly
stated in the definition of a field).
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Corollary 4.6.1. The elements 0 and 1 in a field are unique.

Proof. Suppose that 0′ ∈ F is another additive identity, so that 0′ + x = x for all x ∈ F . Then,
since 0 + x = x, we have

0′ + x = 0 + x

for all x ∈ F . By Proposition 4.6(i), it follows that 0′ = 0.
Similarly, suppose that there is an element 1′ ∈ F such that 1′ · x = x for all x ∈ F . Then since

1 · x = x, we have

1′ · x = 1 · x
for all x ∈ F . In particular, we may choose x = 1. By the Proposition 4.6(ii), it follows that
1 = 1′. □

A similar statement is the uniqueness of multiplicative and additive inverses.

Corollary 4.6.2. For each x ∈ F , the element x′ satisfying x + x′ = 0 is unique. If x ̸= 0, the
element x′ satisfying x′ · x = 1 is unique.

Proof. Assume that x′ and x′′ are elements of F such that x+x′ = 0 and x+x′′ = 0. In particular,
x+ x′ = x+ x′′ so Proposition 4.6(i) proves x′ = x′′.

Assume that x′ and x′′ are elements of F such that x · x′ = 1 and x · x′′ = 1. In particular,
x · x′ = x · x′′ so Proposition 4.6(ii) proves x′ = x′′. □

These corollaries allows us to talk about the additive identity, the multiplicative identity, and
the additive inverse of an element. Furthermore, we can make the following notational definition.

Definition 4.7. Let F be a field, and let x ∈ F . The additive inverse is also denoted −x, and
then multiplicative inverse (if x ̸= 0) is denoted x−1 or 1

x
.

Here are some more familiar properties of real numbers that are true in all fields.

Proposition 4.8. Let F be a field, and let x, y ∈ F .

(i) 0 · x = 0,
(ii) −(−x) = x,
(iii) (−x) · y = x · (−y) = −(x · y),
(iv) (−x) · (−y) = x · y,
(v) If F has more than one element, then 0 has no multiplicative inverse.

Proof. (i)

0 · x = 0 · x+ 0 additive identity

= 0 · x+ (x+ (−x)) additive inverse

= (0 · x+ x) + (−x) associativity of addition

= (x · 0 + x · 1) + (−x) commutativity of multiplication

= x · (0 + 1) + (−x) distributivity of multiplication over addition

= x+ (−x) multiplicative identity

= 0

(ii) We want to show that x is the additive inverse of −x. By commutativity of addition,
0 = x+ (−x) = (−x) + x. By uniqueness of additive inverses, Corollary 4.6.2, −(−x) = x.
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(iii) In order to prove x · (−y) = −(x · y), we need to show that x · (−y) is the additive inverse
of x · y. We have

x · y + x · (−y) = x · (y + (−y)) distributivity of multiplication over addition

= x · 0 additive inverse

= 0 · x commutativity of multiplication

= 0 (i)

Follow a similar argument to show that (−x) · y = −(x · y).
(iv)

(−x) · (−y) = −(x · (−y)) (iii)

= −(−(x · y)) (iii)

= x · y (ii)

(v) We will prove the contrapositive. Assume there is some x ∈ F such that 0 · x = 1. By (i),
0 = 0 · x = 1. For any y ∈ F , we have y = 1 · y = 0 · y = 0. The field contains only the
zero element.

□

We can also now define the notions of subtraction and division in a field, more things that you’ve
taken for granted!

Definition 4.9. Let F be a field. For x, y ∈ F , define

x− y := x+ (−y).

Similarly, if y ̸= 0, define
x

y
:= x · 1

y
.

5. Vector spaces

Just as a field is an abstraction of R, a vector space will be an abstraction of our understanding
of Rn. Vector spaces are one the main objects of interest in linear algebra.

Definition 5.1. A vector space over a field F , also referred to as an F-vector space, is a
set V with two operations, addition (+) and scalar multiplication (·), the first of which takes a
pair of elements v, w ∈ V and produces a new element v + w ∈ V , and the second of which takes
an element λ ∈ F and an element v ∈ V and produces a new element λ · v ∈ V . Moreover, these
operations satisfy the following properties:

(1) For all v, w ∈ V , v + w = w + v.
(2) For all u, v, w ∈ V , (u+ v) + w = u+ (v + w).
(3) There exists an element 0 ∈ V such that v + 0 = v for all v ∈ V .
(4) For each v ∈ V , there is an element v′ ∈ V such that v + v′ = 0.
(5) For all v ∈ V , 1 · v = v.
(6) For all λ, µ ∈ F and v ∈ V , (λ · µ) · v = λ · (µ · v).
(7) For all λ ∈ F and v, w ∈ V , λ · (v + w) = λ · v + λ · w.
(8) For all λ, µ ∈ F and v ∈ V , (λ+ µ) · v = λ · v + µ · v.

Definition 5.2. A vector is an element of a vector space.
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Remark 5.3. An important but subtle point is that the operations that define a vector space are
distinct from those that define a field. For example, in Definition 5.1(6) there are two completely
different types of multiplication happening on each side of the equation. In the expression

(λ · µ) · v
the multiplication in the parentheses is the multiplication operation in the field F . The second ·
represents scalar multiplication in the vector space V , which is a completely different operation.
In contrast, the expression

λ · (µ · v)
has only scalar multiplication in the vector space V .

Example 5.4. The set
Rn := {(x1, . . . , xn) : xj ∈ R}

is a vector space over R with addition defined asx1
...
xn

+

y1
...
yn

 :=

x1 + y1
...

xn + yn


and scalar multiplication defined as

λ ·

x1
...
xn

 :=

λ · x1
...

λ · xn

 .

All of the above vector space axioms are the usual familiar algebraic rules in Rn.

Example 5.5. More generally, we can consider

Fn := {(x1, . . . , xn) : xj ∈ F}
where F is any field. Then Fn is a vector space over F with addition defined asx1

...
xn

+

y1
...
yn

 :=

x1 + y1
...

xn + yn


and scalar multiplication defined as

λ ·

x1
...
xn

 :=

λ · x1
...

λ · xn

 .

Example 5.6. Let Mm×n(F) := {A : A is an m× n matrix with entries in F}. Define addition
in the usual way. If A,B ∈ Mm×n(F), then

(A+B)ij := Aij +Bij.

Here, Aij is the (i, j)th entry of the matrix A. Likewise, define scalar multiplication for λ ∈ F and
A ∈ Mm×n(F) as

(λA)ij := λAij.

ThenMm×n(F) is a vector space over F . Again, we don’t verify all of the properties here, but these
are the usual algebraic operations on matrices. The zero matrix 0 ∈ Mm×n(F) satisfies Definition
5.1(3).

Example 5.7. We can endow C with the structure of a vector space in a few ways.
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(1) With the usual operations of complex addition and multiplication, C is a vector space over
C. (In this case, both field multiplication and scalar multiplication in the vector space are
given by the usual multiplication of complex numbers).

(2) We can also endow C with the structure of a vector space over R. This time, scalar
multiplication for λ ∈ R and a+ bi ∈ C is defined as

λ · (a+ bi) = λa+ λbi.

This is a different vector space structure than (1)!

Example 5.8. In general, if F is a field, then F is a vector space over F .

Example 5.9. Let S be a set and F a field. Define

F (S,F) := {f : S → F}.
The notation f : S → F is a function f whose domain is S and whose codomain is F . Define
addition as

(f + g)(s) = f(s) + g(s)

and scalar multiplication as
(λf)(s) = λf(s).

Then F (S,F) is a vector space over F .

End of lecture 2

Proposition 5.10 (Cancellation law for vector addition). Let V be a vector space, and let u, v, w ∈
V . Suppose that u+ v = u+ w. Then v = w.

Proof. Let u′ be an additive inverse of u.

u+ v = u+ w

u′ + (u+ v) = u′ + (u+ w)

(u′ + u) + v = (u′ + u) + w associativity of addition

(u+ u′) + v = (u+ u′) + w commutativity of addition

0 + v = 0 + w additive inverse

v = w additive identity

□

Corollary 5.10.1. In a vector space, the element 0 is unique. Likewise, for each v ∈ V , the
element v′ ∈ V satisfying v + v′ = 0 is unique.

Proof. We will first prove that 0 is unique. Let 0′ ∈ V be such that 0′ + v = v for all v ∈ V . Then
0′ = 0′ + 0 = 0 and the additive identity is unique.

Let v′ and v′′ be elements of V such that v + v′ = 0 and v + v′′ = 0. Then v + v′ = v + v′′ so
v′ = v′′ by Proposition 5.10. □

Definition 5.11. Let v ∈ V . Define −v ∈ V to be the unique element satisfying v + (−v) = 0.

As in a field, we can then define subtraction in a vector space as v − w := v + (−w).

Proposition 5.12. Let V be a vector space over a field F .

(i) For each v ∈ V , 0 · v = 0.
(ii) For each v ∈ V and λ ∈ F , (−λ)v = λ(−v) = −(λv).
(iii) For each λ ∈ F , λ · 0 = 0.
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Proof. (i)

0 · v = 0 · v + (v + (−v)) additive inverse

= (0 · v + v) + (−v) associativity of addition

= (0 + 1) · v + (−v) distributivity

= v + (−v) multiplication by 1

= 0 additive inverse

(ii) Recall that −(λv) is the unique element in V such that λv + (−λv) = 0. Then

λv + (−λ)v = (λ+ (−λ))v

by Definition 5.1(8). Since λ+ (−λ) = 0 in F ,

λv + (−λ)v = 0v = 0

where the last equality follows from (i). By Corollary 5.10.1, (−λ)v = −(λv).
We, likewise, show that

λv + λ(−v) = λ(v + (−v))) = λ0 = 0.

Thus λ(−v) is the additive inverse of λv and λ(−v) = −(λv).
(iii)

λ · 0 = λ · (v + (−v)) additive inverse

= λv + λ(−v) distributivity

= λv + (−λv) (ii)

= 0 additive inverse

□

6. Subspaces

Definition 6.1. Let V be a vector space over a field F . A subspace of V is a subset W ⊂ V
such that W is a vector space over F with the operations inherited from V .

Example 6.2. Let V be a vector space. Then {0} ⊂ V and V ⊂ V are both subspaces of V .

Note that, for any subset of a vector space, the axioms (1), (2), (5), (6), (7), and (8) in Definition
5.1 automatically hold because the subset inherits the operations of V . Thus, to determine if a
given subset W of V is a subspace, one needs to only verify that addition and scalar multiplication
are well-defined when restricted to the subset along with following axioms.

(3) There exists an element 0 ∈ W such that w + 0 = w for all w ∈ W .
(4) For each w ∈ W , there is an element w′ ∈ W such that w + w′ = 0.

In fact, we can identify subspaces in the following efficient manner.

Proposition 6.3. Let V be a vector space over F . A subset W ⊂ V is a subspace if and only if
the following three properties hold for the operations defined in V .

(1) 0 ∈ W
(2) If v, w ∈ W , then v + w ∈ W .
(3) If λ ∈ F and v ∈ W , then λv ∈ W .
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Proof. (⇒) Assume that W ⊂ V is a subspace. Since W is a vector space with the operations
inherited from V , (2) and (3) automatically hold. Furthermore, since W is a vector space, there
exists an element 0′ ∈ W such that 0′ + w = w for all w ∈ W . The zero element from V satisfies
0 + v = v for all v ∈ V . By the cancellation law, Proposition 5.10, 0 = 0′. Therefore, 0 ∈ W , and
(1) holds.

(⇐) Assume that (1), (2), and (3) hold. We wish to show that W is a subspace of V . Because W
inherits the operations of V , it follows that (1), (2), (3), (5), (6), (7), and (8) from Definition 5.1
automatically hold in W . We only need to verify the existence of additive inverses. Fix w ∈ W .
By closure under scalar multiplication, (−1)w = −w ∈ W so w has an additive inverse in W .
Therefore, W is a subspace. □

We call the second property closure under addition and the third property closure under scalar
multiplication. Using these, we can easily identify more examples and non-examples of subspaces.

Example 6.4. The intuitive notion of a subspace should familiar in the setting of Rn. Namely,
any hyperplane passing through the origin is a subspace. A hyperplane not passing through the
origin is not a subspace, in part because it doesn’t contain 0. A set like

S = {(x, y) ∈ R2 : y = x2}
is not a subspace of R2 since it isn’t closed under addition or scalar multiplication (though it does
contain the origin).

End of lecture 3

Example 6.5. Consider the vector space Mn×n(F) of n × n matrices with entries in a field F .
Let W ⊂ Mn×n(F) be the set of all symmetric matrices,

W := {A ∈ Mn×n(F) : Aij = Aji for all 1 ≤ i, j ≤ n}.
Note that the 0 matrix is symmetric. If A and B are symmetric, then A+B and λA are symmetric.
Thus, W is a subspace of Mn×n(F).

End of lecture 4
We can also define the set of skew-symmetric matrices,

Z := {A ∈ Mn×n(F) : Aij = −Aji for all 1 ≤ i, j ≤ n}.
Note that the 0 matrix is skew-symmetric. If A and B are skew-symmetric, then A + B and λA
are skew-symmetric. Thus Z is a subspace of Mn×n(F).

Example 6.6. Consider the vector space Mn×n(R) of n × n matrices with entries in R. Let
S ⊂ Mn×n(R) be the set of matrices with non-negative entries,

S := {A ∈ Mn×n(R) : Aij ≥ 0}.
The set S is not a subspace since it isn’t closed under scalar multiplication. For example, if
A ∈ Mn×n(R) is any non-zero matrix, then (−1)A /∈ S.

Proposition 6.7. Let V be a vector space, and let W1,W2 ⊂ V be subspaces. Then W1 ∩W2 is
a subspace.

Proof. Since W1 and W2 are subspaces, 0 ∈ W1 and 0 ∈ W2. Thus, 0 ∈ W1 ∩W2.
Let v, w ∈ W1 ∩ W2. Since v, w ∈ W1 and W1 is a subspace, we have v + w ∈ W1. Likewise,

since v, w ∈ W2 and W2 is a subspace, we have v + w ∈ W2. Thus, v + w ∈ W1 ∩W2.
Let v ∈ W1 ∩W2 and λ ∈ F . Since W1 is a subspace and v ∈ W1, we have λv ∈ W1. Likewise,

since W2 is a subspace and v ∈ W2, we have λv ∈ W2.
By Proposition 6.3, W1 ∩W2 is a subspace. □
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In general, the union of two subspaces is not a subspace!

Example 6.8. Consider R2 with W1 the x-axis and W2 the y-axis. Then W1 ∪W2 is not closed
under addition. For example, (1, 0) + (0, 1) = (1, 1) is not on either axis. Thus W1 ∪W2 is not a
subspace of R2.

7. Direct sums of subspaces

Even though the union of two subspaces is not a subspace in general, it would be nice to have
a way to “combine” two subspaces to form a new one.

Definition 7.1. Let S1, S2 ⊂ V be subsets of a vector space V . The sum of S1 and S2 is

S1 + S2 := {s1 + s2 : s1 ∈ S1, s2 ∈ S2}.

Definition 7.2. A vector space V is the direct sum of two subspaces W1,W2 ⊂ V , written
V = W1 ⊕W2, if W1 ∩W2 = {0} and W1 +W2 = V .

Example 7.3. Consider the vector space R2. Let W1 and W2 be the x-axis and y-axis respectively
as in Example 6.8. Fix any element (x, y) ∈ R2. Then

(x, y) = (x, 0) + (0, y).

Since (x, 0) ∈ W1 and (0, y) ∈ W2, we have R2 = W1 + W2. Further, W1 ∩ W2 = {(0, 0)} so
R2 = W1 ⊕W2.

More generally, if W1 and W2 are any two non-parallel lines passing through the origin in R2,
then R2 = W1 ⊕W2.

End of lecture 5

Example 7.4. Consider the vector space R3. Let W1 = {(x, y, 0) : x, y ∈ R} be the xy-plane,
and let W2 = {(x, 0, z) : x, z ∈ R} the xz-plane. We can show that W1 + W2 = R3. However,
W1 ∩W2 = {(x, 0, 0) : x ∈ R} is the x-axis. As a result, R3 is not the direct sum of W1 and W2.
We note that a vector like (1, 1, 1) ∈ R3 can be written as two different sums of an element in

W1 and an element in W2.

(1, 1, 1) = (1, 1, 0) + (0, 0, 1)

(1, 1, 1) = (0, 1, 0) + (1, 0, 1)

The lack of a unique representation for (1, 1, 1) is an important indicator that a vector space is
not a direct sum of the given subspaces. We will revisit this concept in Proposition 7.6.

Example 7.5. Consider the vector space F (R,R) = {f : R → R} of functions from R to R.
Define the following subspaces of even functions W1 and odd functions W2.

W1 = {f ∈ F (R,R) : f(−x) = f(x)}
W2 = {f ∈ F (R,R) : f(−x) = −f(x)}

We claim that F (R,R) = W1 +W2. Let f ∈ F (R,R). Define g, h ∈ F (R,R) as follows.

g(x) :=
f(x) + f(−x)

2

h(x) :=
f(x)− f(−x)

2
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Then

g(x) + h(x) =
f(x) + f(−x)

2
+

f(x)− f(−x)

2

=
f(x)

2
+

f(x)

2
= f(x).

Note that

g(−x) =
f(−x) + f(−(−x))

2
=

f(−x) + f(x)

2
= g(x)

so g ∈ W1. Similarly,

h(−x) =
f(−x)− f(−(−x))

2
= −f(x)− f(−x)

2
= −h(x)

so h ∈ W2. Since f = g + h, this shows that F (R,R) = W1 +W2.
We claim that F (R,R) = W1 ⊕W2. It remains to show that W1 ∩W2 = {0} where 0 : R → R

is the zero function. Suppose that f ∈ W1 ∩W2. Then f(x) = f(−x) and f(x) = −f(−x) for all
x ∈ R. Thus f(−x) = −f(−x) for all x ∈ R. The only number satisfying this property is 0 so
f(x) = f(−x) = 0 for all x ∈ R. Therefore, W1 ∩W2 = {0}, and F (R,R) = W1 ⊕W2.

The following proposition gives another perspective on the meaning of a direct sum.

Proposition 7.6. Let V be a vector space and let W1,W2 ⊂ V be subspaces. Then V = W1⊕W2

if and only if each element of v can be uniquely written as w1 + w2 for some w1 ∈ W1, w2 ∈ W2.

Proof. (⇒) Suppose that V = W1 ⊕W2. Fix v ∈ V . Since V = W1 ⊕W2, V = W1 +W2 so there
exist w1 ∈ W1 and w2 ∈ W2 such that v = w1 + w2. We need to show that this decomposition is
unique. Suppose that there is another decomposition v = w′

1+w′
2 such that w′

1 ∈ W1 and w′
2 ∈ W2.

Then w1 +w2 = w′
1 +w′

2, which implies w1 −w′
1 = w′

2 −w2. Because W1 and W2 are closed under
addition, the left side of the equality is an element in W1 and the right side is an element in W2.
Thus the equality represents an element of W1 ∩ W2. Since V = W1 ⊕ W2, W1 ∩ W2 = {0} so
w1 − w′

1 = 0 = w′
2 − w2. Therefore, w1 = w′

1 and w2 = w′
2. The decomposition v = w1 + w2 is

unique.
(⇐) Suppose that W1,W2 ⊂ V are subspaces such that every v ∈ V has a unique decomposition

v = w1 + w2 for some w1 ∈ W1 and w2 ∈ W2. We need to show that V = W1 ⊕W2. Since every
element of v admits a decomposition v = w1 + w2, it follows that V = W1 + W2. It remains to
show that W1 ∩W2 = {0}. Suppose that v ∈ W1 ∩W2. Note that

v = v + 0

is a decomposition of v since v ∈ W1 and 0 ∈ W2. On the other hand, we can view

v = 0 + v

as a decomposition with w1 = 0 ∈ W1 and w2 = v ∈ W2. By assumption, the decomposition is
unique so v = 0. Thus W1 ∩W2 = {0}, and V = W1 ⊕W2. □

We can generalize the notion of direct sum to multiple subspaces.

Definition 7.7. Let W1, . . . ,Wk be subspaces of a vector space V . Define

W1 + · · ·+Wk := {w1 + · · ·+ wk : wj ∈ Wj}.
We say that V is the direct sum of W1, . . . ,Wk, written

V = W1 ⊕ · · · ⊕Wk,

if V = W1 + · · ·+Wk and Wi ∩ (W1 + · · ·+Wi−1 +Wi+1 + · · ·+Wk) = {0} for all 1 ≤ i ≤ k.
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8. Linear combinations and span

Definition 8.1. Let V be a vector space over a field F . A linear combination of vectors
v1, . . . , vk ∈ V is an element of the form

a1v1 + · · ·+ akvk ∈ V

where a1, . . . , an ∈ F .

Example 8.2. Consider the real vector space R2. The element (1, 6) ∈ R2 is a linear combination
of (1, 2) and (−1, 0) as follows.

3

(
1
2

)
+ 2

(
−1
0

)
=

(
1
6

)
Example 8.3. Consider the vector space F (R,R) of functions f : R → R. The element 2x+3 sinx
is a linear combination of x ∈ F (R,R) and sinx ∈ F (R,R).

Definition 8.4. Let V be a vector space, and let S ⊂ V a non-empty subset. The span of S,
denoted Span(S), is the set of linear combinations of all elements of S,

Span(S) := {a1v1 + · · ·+ akvk : aj ∈ F , vj ∈ S}.
The the span of the empty set, Span(∅), is defined to be {0}.

End of lecture 6

Example 8.5. Consider the vector space R3 and the set S = {(1, 0, 0), (0, 1, 0)}. The span of S
is geometrically described as the xy-plane. Formally,

Span(S) =

a1

1
0
0

+ a2

0
1
0

 : a1, a2 ∈ R


=


a1
a2
0

 : a1, a2 ∈ R

 .

Taking the span of a set of vectors is an easy way to build a subspace in a vector space.

Proposition 8.6. Let V be a subspace, and let S ⊂ V be a subset. Then Span(S) is a subspace
of V . Moreover, it is the smallest subspace containing S.

Proof. First, we show that Span(S) is a subspace. Let s ∈ S be any element. Then

0 = 0 · s ∈ Span(S).

Let v, w ∈ Span(S). By Definition 8.4, there exist s1, . . . sk ∈ S and a1, . . . , ak ∈ F such that

v = a1s1 + · · ·+ aksk.

Likewise, there exist s′1, . . . , s
′
n ∈ S and a′1, . . . , a

′
n ∈ F such that

w = a′1s
′
1 + · · ·+ a′ns

′
n.

Then

v + w = a1s1 + · · ·+ aksk + a′1s
′
1 + · · ·+ a′ns

′
n

so v + w is a linear combination of elements in S. Thus v + w ∈ Span(S). Let v ∈ Span(S) and
λ ∈ F . As before, there exist s1, . . . sk ∈ S and a1, . . . , ak ∈ F such that

v = a1s1 + · · ·+ aksk.
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Then
λv = (λa1)s1 + · · ·+ (λak)sk.

Thus λv is a linear combination of elements of S so λv ∈ Span(S). By Proposition 6.3, it follows
that Span(S) is a subspace.

Next, we prove that Span(S) is the smallest subspace containing S. Suppose that W is a
subspace such that S ⊂ W . We will show that Span(S) ⊂ W . Let v ∈ Span(S). There exist
s1, . . . sk ∈ S and a1, . . . , ak ∈ F such that

v = a1s1 + · · ·+ aksk.

Note that W is closed under addition and scalar multiplication. Since each sj ∈ S ⊂ W , the linear
combination v = a1s1 + · · ·+ aksk ∈ W . Thus Span(S) ⊂ W . □

Corollary 8.6.1. Let W be a subspace of a vector space V that contains set S. Then Span(S) ⊂
W .

Definition 8.7. A subset S of a vector space V generates (or spans) V if Span(S) = V . In this
case, we also say that the vectors of S generate V .

We can start to describe vector spaces with infinitely many elements in terms of linear com-
binations of finitely many elements. In the case of R2, we often describe each vector as a linear
combination of (1, 0) and (0, 1). The entire xy-plane is encapsulated by only two vectors.

Example 8.8. We will show that the matrices(
1 1
1 0

)
,

(
1 1
0 1

)
,

(
1 0
1 1

)
,

(
0 1
1 1

)
generate M2×2(R). In other words, an arbitrary matrix A ∈ M2×2(R) can be written as a linear
combination of the four matrices. We have(

a11 a12
a21 a22

)
=

(
1

3
a11 +

1

3
a12 +

1

3
a21 −

2

3
a22

)(
1 1
1 0

)
+

(
1

3
a11 +

1

3
a12 −

2

3
a21 +

1

3
a22

)(
1 1
0 1

)
+

(
1

3
a11 −

2

3
a12 +

1

3
a21 +

1

3
a22

)(
1 0
1 1

)
+

(
−2

3
a11 +

1

3
a12 +

1

3
a21 +

1

3
a22

)(
0 1
1 1

)
.

However, the matrices (
1 1
0 1

)
,

(
1 0
1 1

)
,

(
1 0
0 1

)
do not generate M2×2(R) because any linear combination will have equal diagonal entries.

9. Linear independence

Next, we discuss linear independence, a concept that should be familiar from linear algebra in
Rn. Our goal is to describe sets of vectors for which there are no redundancies. Each vector in a
linearly independent set provides information about a “new” direction in the vector space.
Recall from Example 8.5 that if S = {(1, 0, 0), (0, 1, 0)} ⊂ R3, then

Span(S) =


a1
a2
0

 : a1, a2 ∈ R

 .



MATH 115A - LINEAR ALGEBRA 19

On the other hand, let S ′ = {(1, 0, 0), (0, 1, 0), (1, 1, 0)} where we include the vector (1, 1, 0) to S.
The span does not change. That is,

Span(S ′) =


a1
a2
0

 : a1, a2 ∈ R

 .

Roughly this is because the third vector is already a linear combination of the first two so it doesn’t
add “new information.” Equivalently, there is a non-trivial linear combination of the three vectors
that produces the zero vector. 1

0
0

+

0
1
0

−

1
1
0

 =

0
0
0


Definition 9.1. Let S be a subset of a vector space V . We say that S is or the elements of S are
linearly dependent if there are vectors v1, . . . , vn ∈ S and scalars a1, . . . , an ∈ F such that

a1v1 + · · ·+ anvn = 0

for some ai non-zero. A set S is linearly independent if it is not linearly dependent.

Note that we have made no assumption about S being finite! The definition holds for sets of
infinite vectors.

Example 9.2. Consider the vector space P (R) of polynomials with coefficients in R. Define
S = {1 + x, x− 2x2, 1 + 2x2}.

Then S is linearly dependent because

1(1 + x)− 1(x− 2x2)− 1(1 + 2x2) = 0.

On the other hand, the set S ′ = {1, x, x2} is linearly independent. Suppose there were a linear
combination of these vectors that produce the zero vector. That is, there are constants a0, a1, a2
such that

a0 + a1x+ a2x
2 = 0.

By an elementary fact about polynomials, the only way this is possible is if ai = 0 for 0 ≤ i ≤ 2.

End of lecture 7

Remark 9.3. We will also write Pk(R) to be the vector space of polynomials of degree less than
or equal to k with coefficients in R. Example 9.2 would also work in the vector space P2(R).

Example 9.4. Suppose that 0 ∈ S. We have the following non-trivial linear combination of
elements in S that produces the zero vector.

1 · 0 = 0

Thus S is linearly dependent. Any set containing the zero vector is linearly dependent.

Example 9.2 leads to an important equivalent way to think about linear independence, which is
essentially a reformulation of Definition 9.1.

Proposition 9.5. A set S ⊂ V is linearly independent if and only if, for any v1, . . . , vn ∈ S,

a1vn + · · ·+ anvn = 0 ⇒ a1 = · · · = an = 0.

Example 9.6. Let v ∈ V be a non-zero vector. Then {v} is a linearly independent set since
av = 0 implies a = 0.
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Example 9.7. Consider the vector space F (R,R). The vectors sinx and cosx are linearly inde-
pendent. Indeed, suppose

a sinx+ b cosx = 0

for some constants a, b. Note that this is an equality of functions, not of numbers! Thus

a sinx+ b cosx = 0

for all x ∈ R. Plugging in x = 0 gives b = 0, and plugging in x = π
2
gives a = 0. Therefore, sinx

and cos x are linearly independent.

Proposition 9.8. Let V be a vector space, and let S1 ⊂ S2 ⊂ V . If S1 is linearly dependent, then
S2 is linearly dependent.

Proof. Since S1 is linearly dependent, there is some linear combination a1v1 + · · · + akvk = 0 for
vi ∈ S and non-zero scalars ai. Each vi is also in S2 so the linear combination a1v1+ · · ·+akvk = 0
is a non-trivial representation of 0 with vectors in S2. Thus S2 is linearly dependent. □

Corollary 9.8.1. Let V be a vector space, and let S1 ⊂ S2 ⊂ V . If S2 is linearly independent,
then S1 is linearly independent.

Proposition 9.9. Let S be a linearly independent subset of a vector space V . Let v be a vector
in V that is not in S. Then S ∪ {v} is linearly dependent if and only if v ∈ Span(S).

Proof. (⇒) Assume that S ∪ {v} is linearly dependent. Then there are vectors u1, u2, . . . , uk in
S ∪ {v} such that a1u1 + . . . akuk = 0 for some non-zero scalars ai. If each ui ∈ S, then ai = 0 for
all 1 ≤ i ≤ k by S linearly independent. Therefore, one of the ui, say u1, is equal to v. We can
write

v = −a−1
1 (a2u2 + · · ·+ akuk)

so v ∈ Span(S) as desired.
(⇐) Assume v ∈ Span(S). Then v = a1u1 + · · ·+ akuk for ui ∈ S and scalars ai. We can write

0 = a1u1 + · · · + akuk − v. The set {u1, . . . , uk, v} is linearly dependent so S ∪ {v} is linearly
dependent by Proposition 9.8. □

End of lecture 8

10. Bases and dimension

The idea of linear independence was motivated by the desire to identify a “minimal spanning
set.” In words, given a vector space or subspace, could we find a set S with as few elements as
possible that span the space?

Definition 10.1. Let V be a vector space. A basis of V is a linearly independent set B such that
Span(B) = V .

Proposition 10.2. Let V be a vector space, and let B = {u1, . . . , un} be a subset of V . Then B
is a basis of V if and only if every element v ∈ V admits a unique decomposition of the form

v = a1u1 + · · ·+ anun

for some a1, . . . , an ∈ F .

Proof. (⇒) Suppose that B is a basis. Let v ∈ V . Since Span(B) = V , there exist scalars a1, . . . , an
in F such that

v = a1u1 + · · ·+ anun.

Suppose that v = a′1u1 + · · ·+ a′nun is another such decomposition. Then since

a1u1 + · · ·+ anun = a′1u1 + · · ·+ a′nun,
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we have

(a1 − a′1)u1 + · · ·+ (an − a′n)un = 0.

Since {u1, . . . , un} is linearly independent, it follows that a1 − a′1 = 0, . . . , an − a′n = 0. Thus
a′1 = a1, . . . , a

′
n = an so the above decomposition is unique.

(⇐) Assume that every element v ∈ V has a unique decomposition of the form a1u1+ · · ·+anun.
Since such a representation exists for each v ∈ V , we have V = Span(B). For the zero vector,
we always have the representation 0u1 + · · · + 0un. By assumption, the representation is unique.
Proposition 9.5 proves that B is linearly independent and, thus, a basis for V . □

Example 10.3. Let ei ∈ Fn be the vector (0, . . . , 0, 1, 0, . . . , 0) where the 1 is in the ith position.
The standard basis for the vector space Fn is the set B = {ei : 1 ≤ i ≤ n}. Clearly, each vector in
Fn can be written as a linear combination of the standard basis vectors. We need only check that
B is linearly independent. For the linear combination

a1e1 + · · ·+ anen = 0,

we want to show that each ai has to be 0. Writing both sides as vectors,a1
...
an

 =

0
...
0

 .

The only linear combination of the vectors in B that produces the 0 vector requires all 0 coefficients.
We can check that each vector in Fn can be written uniquely as a linear combination of B.

Example 10.4. Every polynomial in P (R) can be written as a linear combination of the elements

of B = {1, x, x2, . . . }. The only way that
∑k

i=0 aix
i = 0 is if ai = 0 for each i. Thus B is linearly

independent. We call B the standard basis for P (R).

Theorem 10.5 (Replacement Theorem). Let V be a vector space, and suppose that S ⊂ V is a
finite subset with n elements such that Span(S) = V . Let L ⊂ V be a set of linearly independent
vectors with m elements.

(i) m ≤ n
(ii) There is a subset S ′ ⊂ S of n−m vectors such that

Span(L ∪ S ′) = V.

Proof. 1 Fix n ≥ 0. We proceed by induction on m.
As a base case, consider m = 0. A subset L ⊂ V with m = 0 elements is necessarily the empty

set. Since 0 ≤ n, (i) holds. Further, Span(L ∪ S) = Span(S) = V so (ii) holds with S ′ = S.
Now we perform the inductive step. Suppose the claim is true for some m ≥ 0. Let L be a set

of linearly independent vectors with m+ 1 elements. We wish to show that m+ 1 ≤ n and there
is a subset S ′ ⊂ S with n− (m+ 1) elements such that Span(L ∪ S ′) = V .

Write L = {v1, . . . , vm+1}. L is linearly independent so Corollary 9.8.1 implies {v1, . . . , vm} ⊂ L
is linearly independent. By the inductive hypothesis, we have m ≤ n. Also by the inductive
hypothesis, there is a subset S ′ := {u1, . . . , un−m} ⊂ S such that

Span(v1, . . . , vm, u1, . . . , un−m) = V.

It may still be the case that m = n. Since vm+1 ∈ V , it follows that

vm+1 = a1v1 + · · · amvm + b1u1 + · · ·+ bn−mun−m

1This proof is optional.
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for some scalars aj, bj ∈ F . Suppose that m = n or n−m = 0. Then vm+1 is a linear combination
of v1, . . . , vm, which contradicts that fact that L is linearly independent. Thus n − m > 0 and
m+ 1 ≤ n. This proves (i) in the statement of the theorem.
We need to identify a subset S ′ ⊂ S with n− (m+ 1) elements such that L ∪ S ′ spans V . Note

that at least one of the bj coefficients must be non-zero. Possibly after reordering elements, assume
that b1 ̸= 0. Let S ′ = {u2, . . . , un−m} so S ′ has n− (m+ 1) elements. We claim that

Span(L ∪ S ′) = V.

Note that

{v1, . . . , vm, u2, . . . , un−m} ⊂ Span(L ∪ S ′).

Since

u1 =
1

b1
vm+1 −

a1
b1
v1 − · · · − am

b1
vm − b2

b1
u2 − · · · − bn−m

b1
un−m,

u1 ∈ Span(L ∪ S ′). Therefore,

{v1, . . . , vm u1, . . . , un−m} ⊂ Span(L ∪ S ′).

The span of the set on the left is V by the inductive hypothesis. Corollary 8.6.1 implies that V is
a subset Span(L ∪ S ′). □

Corollary 10.5.1. Let V be a vector space with a finite basis. Then every basis of V contains
the same number of elements.

Proof. 2 Let B be a basis of V with n elements. Let B′ be another basis. We wish to show that B′

also has n elements. Suppose that B′ has more than n elements (possibly infinitely many). Let S
be a subset of B′ with n+ 1 elements. Since B′ is linearly independent, S is linearly independent
by Corollary 9.8.1. Since B is a spanning set of V , Replacement Theorem implies n+1 ≤ |B| = n,
a contradiction. Thus B′ cannot have more than n elements.

Now let m denote the (finite) number of elements of B′. By above, m ≤ n. Reverse the roles of
B and B′. Since Span(B′) = V and B is linearly independent, Replacement Theorem implies that
n ≤ m. We conclude n = m. □

Using Corollary 10.5.1, we can now formally define the notion of dimension. Dimension assigns
to each vector space a number. The number indicates the “size” of the vector space or, more
specifically, how many vectors we need to uniquely describe each element.

End of lecture 9

Definition 10.6. A vector space V is finite dimensional if it has a basis with finitely many
elements. The number of vectors in any basis for a finite dimensional vector space V over F is the
dimension of V , denoted dimF(V ). If a vector space does not have a finite basis, it is infinite
dimensional.

Remark 10.7. When it is clear to which field we are referring, we will drop the subscript part of
the dimension notation.

Example 10.8. The vector space {0} has dimension 0 because Span(∅) = {0} by definition.

Example 10.9. The dimension of Fn is n since the standard basis from Example 10.3 has n
elements.

Example 10.10. The vector space P (F) is infinite dimensional because the set {1, x, x2, . . . } is
a basis by Example 10.4.

2This proof is also optional.
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Example 10.11. Recall that C can be given a vector space structure in two different ways: as a
real vector space (over R) and as a complex vector space (over C).

(1) View C as a vector space over C. According to Example 10.9 with F = C and n = 1, the
vector space has dimension 1 with possible basis {1}. Thus dimC(C) = 1.

(2) View C as a vector space over R. Then {1, i} is a basis for C so C has dimension 2. Indeed,
any complex number a+ bi ∈ C is a linear combination of 1 and i via

a+ bi = (a)1 + (b)i.

We now show that {1, i} is linearly independent over R. Suppose that a1, a2 ∈ R are real
numbers such that

a1 · 1 + a2 · i = 0.

Then a1 + a2i = 0 implies a1 = a2 = 0, and {1, i} is linearly independent. Therefore, {1, i}
is a basis for C as a vector space over R. We have dimR(C) = 2.

The next two results prove that, in a finite dimensional vector space, a spanning set can be
reduced to a basis and a linearly independent set can be extended to a basis. If we have a linearly
independent or spanning set, we need only count the number of elements to check whether the set
is a basis for a finite dimensional vector space.

Proposition 10.12. If a vector space V is generated by a finite set S, then some subset of S is a
basis for V . Hence V has a finite basis.

Proof. If S = ∅ or S = {0}, then V = {0}. We note that ∅ ⊂ S is a basis for V . Otherwise
S contains a non-zero vector u1. By Example 9.6, {u1} is a linearly independent set. Continue,
if possible, choosing vectors u2, . . . , uk in S such that {u1, u2, . . . , uk} is a linearly independent
set of k vectors. Since S is finite, the process must terminate with a linearly independent set
B = {u1, u2, . . . , uk}. There are two ways this could happen.
(1) The set B = S. In this case, S is both a linearly independent set and a generating set for

V . That is, S is a basis for V .
(2) The set B is a proper linearly independent subset of S such that adjoining to B any new

vector in S produces a linearly dependent set. We claim that B ⊂ S is a basis for V . Since B
is linearly independent by construction, it suffices to show that B spans V . If we can show that
S ⊂ Span(B), then V = Span(S) ⊂ Span(B) by Corollary 8.6.1. Let v ∈ S. If v ∈ B, then
clearly v ∈ Span(B). Otherwise, v ̸∈ B, and B ∪ {v} is linearly dependent by assumption. Thus
v ∈ Span(B) by Proposition 9.9. We conclude that S ⊂ Span(B). □

Proposition 10.13. Let V be a vector space with dimension n.

(i) If S ⊂ V is a finite spanning set of V , then |S| ≥ n. If |S| = n, then S is a basis.
(ii) If L is a linearly independent subset of V such that |L| = n, then L is a basis.
(iii) If L is a linearly independent subset of V , then L can be extended to a basis (that is, there

is a basis B such that L ⊂ B).

Proof. Let B be a basis of V , which will have n elements by Corollary 10.5.1.

(i) Let S be a finite generating set for V . By Proposition 10.12, some subset H of S is a
basis for V . Corollary 10.5.1 implies that H contains exactly n vectors. Therefore, S must
contain at least n vectors. If S contains exactly n vectors, then we must have H = S and
S is a basis for V .

(ii) Let L be a linearly independent subset of V containing exactly n vectors. Replacement
Theorem proves there is a subset H of B containing n − n = 0 vectors such that L ∪ H
generates V . Thus H = ∅, and L generates V . Since L is also linearly independent, L is a
basis for V .
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(iii) If L is a linearly independent subset of V containing m vectors, then Replacement Theorem
asserts that there is a subset H of B containing exactly n − m vectors such that L ∪ H
generates V . Thus L ∪ H contains at most n vectors. By (i), the spanning set L ∪ H
contains at least n vectors. Therefore, L∪H contains exactly n vectors so L∪H is a basis
for V by (i).

□

We can briefly summarize the contents of the Replacement Theorem, Proposition 10.12, and
Proposition 10.13. Let V be a vector space of dimension n. Then linearly independent sets have
size ≤ n, generating sets have size ≥ n, and bases have size n. Any linearly independent set can
be made into a basis by strategically adjoining elements until we have size n. Any spanning set
can be made into a basis by strategically removing elements until we have size n.

As a point of caution, not all subsets of V of size ≤ n are linearly independent. Likewise, not
all subsets of V of size ≥ n are spanning sets. We always need to show at least one of linear
independence or span.

The following is an example of how we can reduce a spanning set to basis.

Example 10.14. Consider the vector space P (R) of polynomials (of any degree) with coefficients
in R. Define the following vectors.

p1(x) = x+ 2x3

p2(x) = 1 + x+ x2

p3(x) = 3 + 4x+ 3x2 + 2x3

p4(x) = 0

Let W := Span({p1(x), p2(x), p3(x), p4(x)}) so S = {p1(x), p2(x), p3(x), p4(x)} is a generating set
for W . By Example 9.4, p4(x) = 0 ∈ S implies that S is not linearly independent. We want to
reduce the spanning set S to a basis for W . We will need to remove p4(x). Note further that

p3(x) = 3 + 4x+ 3x2 + 2x3

= (x+ 2x3) + 3(1 + x+ x2)

= p1(x) + 3p2(x).

We guess that {p1(x), p2(x)} is a basis for W .
Suppose a1, a2 ∈ R such that

a1p1(x) + a2p2(x) = 0

a1
(
x+ 2x3

)
+ a2

(
1 + x+ x2

)
= 0

a2 + (a1 + a2)x+ a2x
2 + 2a1x

3 = 0.

For a polynomial to be the zero polynomial, all of its coefficients must be 0. We obtain the following
system of linear equations.

a2 = 0

a1 + a2 = 0

a2 = 0

2a1 = 0

The first and fourth equations imply that a1 = a2 = 0. Therefore, {p1(x), p2(x)} is linearly
independent.
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Next, we show that Span({p1(x), p2(x)}) = W . Let v(x) ∈ W . Then

v(x) = a1p1(x) + a2p2(x) + a3p3(x) + a4p4(x)

for some a1, a2, a3, a4 ∈ R. By above,

v(x) = a1p1(x) + a2p2(x) + a3(p1(x) + 3p2(x)) + a4 · 0
= (a1 + a3)p1(x) + (a2 + 3a3)p2(x).

Thus v(x) ∈ Span({p1(x), p2(x)}), and W ⊂ Span({p1(x), p2(x)}). Since p1(x), p2(x) ∈ W , Corol-
lary 8.6.1 implies Span({p1(x), p2(x)}) is a subset of W . Therefore, W = Span({p1(x), p2(x)}).
We conclude that {p1(x), p2(x)} is a basis and dim(W ) = 2.

End of lecture 10
The following is an example of how we can extend a linearly independent set to a basis.

Example 10.15. Consider the vector space P3(R) of polynomials of degree less than or equal to
3 with coefficients in R. Define S = {1, 1+ x, 1+ x2}. We immediately know that S is not a basis
for P3(R) since |S| = 3 < 4 = dim(P3(R)). However, we can show that S is linearly independent
as follows. Suppose a1, a2, a3 ∈ R are such that

a1 · 1 + a2 · (1 + x) + a3 · (1 + x2) = 0.

We group the terms based on degree to obtain

(a1 + a2 + a3) · 1 + a2 · x+ a3 · x2 = 0

and the system of equations

a1 + a2 + a3 = 0

a2 = 0

a3 = 0.

Thus a1 = a2 = a3 = 0 is the only possible solution. We conclude that S is linearly independent.
We will now extend S to a basis for P3(R). We want to adjoin some element of P3(R) that is

not in Span(S). Since the degree of each term of S is less than or equal to 2, an element of P3(R)
of degree 3 should be a good choice. Define S ′ = S ∪ {x3}. Since |S ′| = 4 = dim(P3(R)), it is
sufficient to show S ′ is linearly independent in order to show S ′ is a basis for P3(R) by Proposition
10.13(ii). Suppose a1, a2, a3, a4 ∈ R are such that

a1 · 1 + a2 · (1 + x) + a3 · (1 + x2) + a4 · x3 = 0.

We derive a system of linear equations whose only solution is a1 = a2 = a3 = a4 = 0. Therefore,
S ′ is linearly independent and a basis for P3(R).

We can prove that subspaces of vector spaces cannot have larger dimension than the overall
vector space. Further, a subspace of the same dimension as the overall vector space must be the
whole thing. In other words, dimension is a well-behaved tool for judging the size of vector spaces.

Proposition 10.16. Let V be a finite dimensional vector space, and let W ⊂ V be a subspace.
Then W is finite dimensional, and dim(W ) ≤ dim(V ). Moreover, if dim(W ) = dim(V ), then
V = W .

Proof. Let dim(V ) = n. If W = {0}, then dim(W ) ≤ dim(V ). Assume W ̸= {0} so there is
some non-zero vector v1 ∈ W . Continue choosing vectors vi ∈ W so that {v1, . . . , vk} is linearly
independent. Since no set of linearly independent vectors can have more than n vectors, the
process terminates at a point at which k ≤ n. Further, adjoining any new vector from W produces
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a linearly dependent set. By Proposition 9.9, {v1, . . . , vk} spans W . Therefore, {v1, . . . , vk} is a
basis for W so dim(W ) = k ≤ n.

If dim(W ) = dim(V ), then BW is a linearly independent set of V with dim(V ) vectors. Proposi-
tion 10.13(ii) implies that BW is a basis for V . Therefore, V ⊂ Span(BW ) = W , and V = W . □

We can also connect the concepts of basis and dimension to direct sums of subspaces.

Proposition 10.17. Assume that a vector space V can be written as W1 ⊕ · · · ⊕ Wk for finite
dimensional subspaces W1, . . . ,Wk. Let B1, . . . ,Bk be bases for W1, . . . ,Wk respectively. Then
B := B1 ∪ · · · ∪ Bk is a basis for W1 ⊕ · · · ⊕Wk.

Proof. We will proceed by induction on k. The result is trivial for k = 1. Assume the claim holds
for k. We will prove it for k + 1. Note that W1 ⊕ · · · ⊕Wk+1 = (W1 ⊕ · · · ⊕Wk) ⊕Wk+1. Then
C := B1 ∪ · · · ∪ Bk be a basis for W1 ⊕ · · · ⊕Wk by the inductive hypothesis.

Define B = B1 ∪ · · · ∪Bk+1. Let v ∈ V . Then v = a1w1 + · · ·+ ak+1wk+1 for wi ∈ Wi and scalars
ai. We can write a1w1+ · · ·+akwk as a linear combination of vectors in C and ak+1wk+1 as a linear
combination of Bk+1. Thus B spans V .

Let Bi = {vi1, . . . , vimi
}. Assume

∑k+1
i=1

∑mi

j=1 ai,jv
i
j = 0 for scalars ai,j. We can rearrange the

equation to obtain
∑k

i=1

∑mi

j=1 ai,jv
i
j = −

(∑mk+1

j=1 ak+1,jv
k+1
j

)
. Since Wk+1∩ (W1+ · · ·+Wk) = {0},

k∑
i=1

mi∑
j=1

ai,jv
i
j = 0

mk+1∑
j=1

ak+1,jv
k+1
j = 0.

The set C is linearly independent so ai,j = 0 for 1 ≤ i ≤ k and 1 ≤ j ≤ mi. Further, Bk+1 is linearly
independent so ak+1,j = 0. Therefore, B is linearly independent, and B is a basis for V . □

Corollary 10.17.1. Let W1, . . . ,Wk be finite dimensional vector spaces. Then

dim(W1 ⊕ · · · ⊕Wk) =
k∑

i=1

dim(Wi).

11. Linear transformations

So far, we have studied linear algebra in the context of a single vector space. We want to
expand our horizons and incorporate communication between two vector spaces. Perhaps we want
to understand their similarities and differences. To do so, we need to study functions f : V → W
whose domain is some vector space V and whose codomain is another vector space W . In order for
this to be useful, the function needs to respect the vector space structure. We develop the definition
of a linear transformation.

Definition 11.1. Let V,W be vector spaces over the field F . A function T : V → W is a linear
transformation, linear map, linear function, or simply linear if the following hold.

(i) For all v, v′ ∈ V ,
T (v + v′) = T (v) + T (v′).

(ii) For all v ∈ V and λ ∈ F ,
T (λv) = λT (v).

Remark 11.2. Note that the addition and multiplication on the left side of each equality above
occurs in V while the addition and multiplication on the right side of each equality occurs in W .
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Remark 11.3. We will rarely mention the field F . Whenever we discuss a linear transformation,
it is assumed that the domain and codomain vector spaces are with respect to the same field.

Example 11.4. Consider the map T : R → R defined by T (x) = 3x. We can show that T is
linear as follows.

T (x+ y) = 3(x+ y)

= 3x+ 3y

= T (x) + T (y)

T (λx) = 3(λx)

= λ · 3x
= λT (x)

for all x, y ∈ R and λ ∈ R.
On the other hand, consider f : R → R defined by f(x) = 3x+ 1. The function f is not linear.

f(2 · 1) = 3(2 · 1) + 1 = 7

2 · f(1) = 2(3 · 1 + 1) = 8

We will consider more examples soon, but one important and identifying feature of a linear
transformation is that it always takes the zero vector to the zero vector. This provides a way to
immediately recognize that f in Example 11.4 is not linear.

Proposition 11.5. Suppose that T : V → W is linear. Then T (0) = 0.

Proof. We have T (0) = T (0 · 0) = 0 · T (0) = 0. □

Example 11.6. Let A ∈ Mm×n(F). Define T : Fn → Fm by T (x) = Ax where Ax is the
usual matrix-vector multiplication of an m × n matrix by an n × 1 vector. Then T is a linear
transformation.

Example 11.7. Let T : P (R) → P (R) be the map given by T (p)(x) = p′(x) for all p ∈ P (F). In
words, T is the map that eats a polynomial and spits out the derivative. We claim T is linear. Let
p, q ∈ P (R) and λ ∈ R. By properties of the derivative from calculus, we have

T (p+ q)(x) = (p+ q)′(x)

= p′(x) + q′(x)

= T (p)(x) + T (q)(x)

T (λp)(x) = (λp)′(x)

= λp′(x)

= λT (p)(x).

Therefore, T is linear.

End of lecture 11

Example 11.8. Let 0 : V → W be the zero transformation. In other words, 0(v) = 0 for all
v ∈ V . Then 0 is linear.

Example 11.9. Let I : V → V be the identity map so I(v) = v for all v ∈ V . Then I is linear.

Two important features of a linear transformation are its kernel (also called the null space) and
image (also called the range).
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Definition 11.10. Let T : V → W be a linear transformation. The kernel of T is the subset
ker(T ) ⊂ V defined by

ker(T ) := {v ∈ V : T (v) = 0}.
The image of T is the set im(T ) ⊂ W defined by

im(T ) := {w ∈ W : w = T (v) for some v ∈ V }.

In words, the kernel is the set of elements in the domain that gets mapped to the 0 element of
W . The image is the set of all outputs of T in W .

Remark 11.11. The textbook uses N(T ) in place of ker(T ) and R(T ) in place of im(T ). The
notation N(T ) stands for null space and R(T ) stands for range.

Proposition 11.12. Let T : V → W be linear. Then ker(T ) is a subspace of V , and im(T ) is a
subspace of W .

Proof. First, we show that ker(T ) is a subspace of V . Note that T (0V ) = 0W by Proposition 11.5
so 0V ∈ ker(T ). Next, suppose that v, v′ ∈ ker(T ). Then

T (v + v′) = T (v) + T (v′) = 0 + 0 = 0

so v + v′ ∈ ker(T ). Similarly, if v ∈ ker(T ) and λ ∈ F , then

T (λv) = λT (v) = λ · 0 = 0

so λv ∈ ker(T ). Thus ker(T ) is a subspace of V .
Next, we show that im(T ) is a subspace of W . Since 0W = T (0V ) by Proposition 11.5, we have

0W ∈ im(T ). Next, suppose that w,w′ ∈ im(T ). Then there are v, v′ ∈ V such that w = T (v) and
w′ = T (v′). Thus

w + w′ = T (v) + T (v′) = T (v + v′)

so w + w′ ∈ im(T ). Similarly, if w ∈ im(T ) and λ ∈ F , then w = T (v) for some v ∈ V . We have

λw = λT (v) = T (λv)

so λw ∈ im(T ). Therefore, im(T ) is a subspace of W . □

Example 11.13. Let T : R3 → R2 be the linear transformation defined by

T (a1, a2, a3) = (a1 − a2, 2a3).

Let (a1, a2, a3) ∈ ker(T ). Then T (a1, a2, a3) = (a1 − a2, 2a3) = (0, 0). We have

a1 = a2

2a3 = 0

so ker(T ) = {(a, a, 0) : a ∈ R}.
For a possible element of the image, (b1, b2) ∈ R2, we obtain the following system of equations.

a1 − a2 = b1

2a3 = b2

A possible solution to the system is a1 = 1 a2 = 1− b1 and a3 =
b2
2
. Thus every element of R2 is

in the image of T or im(T ) = R2.

The next result simplifies the process of describing the image of a linear transformation.

Proposition 11.14. Let V and W be vector spaces with linear transformation T : V → W . If
B = {v1, . . . , vn} is a basis for V , then im(T ) = Span({T (v1), . . . , T (vn)}).
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Proof. Clearly, T (vi) ∈ im(T ) for each 1 ≤ i ≤ n. By Corollary 8.6.1,

Span({T (v1), . . . , T (vn)}) ⊂ im(T ).

Suppose w ∈ im(T ). Then w = T (v) for some v ∈ V . Since B is a basis for V , we have
v =

∑n
i=1 aivi for scalars ai. By linearity of T ,

w = T (v) =
n∑

i=1

aiT (vi),

and w ∈ Span({T (v1), . . . , T (vn)}). Thus im(T ) ⊂ Span({T (v1), . . . , T (vn)}). □

Example 11.15. Return to Example 11.13. Let T : R3 → R2 be the linear transformation

T (a1, a2, a3) = (a1 − a2, 2a3).

We can find a spanning set for im(T ) easily using Proposition 11.14. We pick the standard basis
{(1, 0, 0), (0, 1, 0), (0, 0, 1)} for the domain R3. Then

im(T ) = Span({T (1, 0, 0), T (0, 1, 0), T (0, 0, 1)})
= Span({(1, 0), (−1, 0), (0, 2)})
= Span({(1, 0), (0, 2)})

by noticing the redundancy (−1, 0) = −1 · (1, 0). We can show that {(1, 0), (0, 2)} is a basis for R2

so im(T ) = R2.

End of lecture 12
Since ker(T ) and im(T ) are subspaces, we can make the following definition.

Definition 11.16. Let V andW be vector spaces with linear transformation T : V → W . Suppose
that ker(T ) and im(T ) are finite dimensional. The nullity of T is

null(T ) := dim(ker(T )),

and the rank of T is
rank(T ) := dim(im(T )).

Theorem 11.17 (Rank-Nullity Theorem). Let V and W be vector spaces with linear transfor-
mation T : V → W . Suppose that V is finite dimensional. Then

dim(ker(T )) + dim(im(T )) = dim(V ).

Proof. Let n = dim(V ) and k = dim(ker(T )).
Let {u1, . . . , uk} be a basis for ker(T ). Since {u1, . . . , un} is a basis of ker(T ), it is a linearly in-

dependent set in V . We can extend the set to a basis {u1, . . . , uk, ũk+1, . . . , ũn} of V by Proposition
10.13(iii). We claim that {T (ũk+1), . . . , T (ũn)} is a basis for im(T ).
First, we prove linear independence. Suppose that

ak+1T (ũk+1) + · · ·+ anT (ũn) = 0.

Then by linearity of T ,
T (ak+1ũk+1 + · · ·+ anũn) = 0.

Thus ak+1ũk+1 + · · · + anũn ∈ ker(T ). Since {u1, . . . , uk} is a basis for ker(T ), there exists
a1, . . . , ak ∈ F such that

ak+1ũk+1 + · · ·+ anũn = a1u1 + · · · akuk,

which implies
a1u1 + · · ·+ akuk − ak+1ũk+1 − · · · − anũn = 0.
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Since {u1, . . . , uk, ũk+1, . . . , ũn} is linearly independent, a1 = · · · = ak = −ak+1 = · · · = −an = 0.
In particular, ak+1 = · · · = an = 0 so {T (ũk+1), . . . , T (ũn)} is linearly independent.
Next, we show that {T (ũk+1), . . . , T (ũn)} spans im(T ). Let w ∈ im(T ). Then there exists

some v ∈ V such that w = T (v). Since {u1, . . . , uk, ũk+1, . . . , ũn} is a basis for V , there exist
b1, . . . , bn ∈ F such that

v = b1u1 + · · ·+ bkuk + bk+1ũk+1 + · · ·+ bnũn.

Since uj ∈ ker(T ) for 1 ≤ j ≤ k,

w = T (v)

= T (b1u1 + · · ·+ bkuk + bk+1ũk+1 + · · ·+ bnũn)

= b1T (u1) + · · ·+ bkT (uk) + bk+1T (ũk+1) + · · ·+ bnT (ũn)

= bk+1T (ũk+1) + · · ·+ bnT (ũn).

Thus w ∈ Span({T (ũk+1), . . . , T (ũn)}), and im(T ) ⊂ Span({T (ũk+1), . . . , T (ũn)}). The opposite
containment is clear. We conclude that {T (ũk+1), . . . , T (ũn)} is a basis for im(T ) so

dim(im(T )) = n− k.

Therefore,
dim(ker(T )) + dim(im(T )) = k + (n− k) = n = dim(V ).

□

Example 11.18. Define the linear transformation T : P2(R) → M2×2(R) by

T (f(x)) =

(
f(1)− f(2) 0

0 f(0)

)
.

Since B = {1, x, x2} is a basis for P2(R), we have

im(T ) = Span({T (1), T (x), T (x2)})

= Span

({(
0 0
0 1

)
,

(
−1 0
0 0

)
,

(
−3 0
0 0

)})
= Span

({(
0 0
0 1

)
,

(
−1 0
0 0

)})
by Proposition 11.14. We can show that the above set is linearly independent so dim(im(T )) = 2.
An element p(x) ∈ ker(T ) is a polynomial for which T (p(x)) is the zero matrix. If we let

p(x) = a0 + a1x+ a2x
2, then

T (p(x)) =

(
(a0 + a1 + a2)− (a0 + 2a1 + 4a2) 0

0 a0

)
=

(
−a1 − 3a2 0

0 a0

)
.

We obtain the following system of linear equations by setting the matrix equal to the zero matrix.

−a1 − 3a2 = 0

a0 = 0

Therefore, ker(T ) = {3ax− ax2 : a ∈ R} with possible basis {3x− x2}. As Rank-Nullity Theorem
predicts, dim(ker(T )) = dim(R3)− dim(im(T )) = 3− 2 = 1.

Next, we recall the notions of injectivity (one-to-one) and surjectivity (onto). The following
definition is very general, and holds for any function between sets.
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Definition 11.19. Let X, Y be sets, and let f : X → Y .

(i) The function f is injective if f(x) = f(x′) implies x = x′.
(ii) The function f is surjective if, for all y ∈ Y , there is an x ∈ X such that f(x) = y.

Remark 11.20. We can unravel the definitions of injective and surjective to get the following
equivalent notions.

(i) A function f : X → Y is not injective if and only if there exist x, x′ ∈ X with x ̸= x′ such
that f(x) = f(x′).

(ii) A function f : X → Y is surjective if and only if im(f) = Y .

End of lecture 13
If we know that a function is linear between two vector spaces, we can say even more about the

injectivity relation.

Proposition 11.21. A linear map T : V → W is injective if and only if ker(T ) = {0}.

Proof. (⇒) Suppose that T is injective. Let v ∈ ker(T ) so T (v) = 0 = T (0). By injectivity of f ,
it follows that v = 0. Thus ker(T ) = {0}.
(⇐) Suppose that ker(T ) = {0}. Take v, v′ ∈ V such that T (v) = T (v′). By the linearity of T ,

T (v)− T (v′) = 0

T (v − v′) = 0.

Thus v − v′ ∈ ker(T ). The only element in ker(T ) is the zero vector so

v − v′ = 0

v = v′.

We conclude that T is injective. □

If we know that the domain and codomain are finite dimensional of the same dimension, we can
find an even stronger relation between injectivity and surjectivity.

Proposition 11.22. Suppose V,W are finite dimensional vector spaces with dim(V ) = dim(W ).
Let T : V → W be linear. Then T is injective if and only if T is surjective.

Proof. (⇒) Suppose that T is injective. Then dim(ker(T )) = 0. By Rank-Nullity Theorem, it
follows that dim(im(T )) = dim(V ). Since dim(W ) = dim(V ), we have dim(im(T )) = dim(W ).
Proposition 10.16 implies that the subspace im(T ) is all of W . Therefore, T is surjective.

(⇐) Suppose that T is surjective. Then im(T ) = W so dim(im(T )) = dim(W ) = dim(V ).
Rank-Nullity Theorem implies dim(ker(T )) = dim(V ) − dim(im(T )) = 0. Thus ker(T ) = {0} so
T is injective by Proposition 11.21. □

Finally, we prove a result that, intuitively, states the action of a linear transformation on a
vector space is entirely determined by what it does to a basis.

Proposition 11.23. Let T : V → W be linear. Suppose that V is finite dimensional with a basis
{u1, . . . , un}. Let S : V → W be another linear transformation such that S(uj) = T (uj) for all
1 ≤ j ≤ n. Then S = T .
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Proof. Let v ∈ V . Because {u1, . . . , un} is a basis for V , we can write v = a1u1 + · · · + anun for
some a1, . . . , an ∈ F . By linearity of S and T ,

S(v) = S(a1u1 + · · · anun)

= a1S(u1) + · · ·+ anS(un)

= a1T (u1) + · · ·+ anT (un)

= T (a1u1 + · · · anun)

= T (v).

Since S(v) = T (v) for all v ∈ V , it follows that S = T . □

Corollary 11.23.1. Let V and W be vector spaces, and suppose {v1, . . . , vn} is a basis for V . For
w1, . . . , wn in W , there exists exactly one linear transformation T : V → W such that T (vi) = wi

for 1 ≤ i ≤ n.

Proof. Let x ∈ V . Then x =
∑n

i=1 aivi for unique a1, . . . , an ∈ F by Proposition 10.2. Define

T (x) =
n∑

i=1

aiwi

so T (vi) = wi for all 1 ≤ i ≤ n. We will first prove that T is linear. Let u, v ∈ V and d ∈ F . We
can write u =

∑n
i=1 bivi and v =

∑n
i=1 civi. Then du+ v =

∑n
i=1(dbi + ci)vi so

T (du+ v) = T

(
n∑

i=1

(dbi + ci)vi

)

=
n∑

i=1

(dbi + ci)wi

= d
n∑

i=1

biwi +
n∑

i=1

ciwi

= dT (u) + T (v).

Uniqueness follows from Proposition 11.23. □

Example 11.24. Let T : P2(R) → P3(R) be the linear transformation defined as

T (p)(x) = 2p′(x) +

∫ x

0

3p(t)dt.

Since {1, x, x2} is a basis for P2(R),
im(T ) = Span({T (1), T (x), T (x2)})

= Span

({
3x, 2 +

3

2
x2, 4x+ x3

})
by Proposition 11.14. We can show that the above set is linearly independent so

rank(T ) = dim(im(T )) = 3.

Since rank(T ) < 4 = dim(P3(R)), T is not surjective. By Rank-Nullity Theorem,

null(T ) = dim(P2(R))− rank(T ) = 3− 3 = 0.

Thus ker(T ) = {0}, and T is injective by Proposition 11.21.

End of lecture 14
End of midterm material
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12. Coordinates and matrix representations

We have seen a number of vector spaces thus far. There are familiar vector spaces like

R3 =


a0
a1
a2

 : aj ∈ R

 .

There are some vector spaces that, perhaps initially, were less familiar, like

P2(R) = {a0 + a1x+ a2x
2 : aj ∈ R}.

If you’ve thought to yourself these two vector spaces basically feel like the same thing, then you’re
correct! The next few topics we discuss will formalize this notion.

Definition 12.1. Let B = (u1, . . . , un) be an (ordered) basis for a vector space V . Let v ∈ V , and
let v = a1u1 + · · · + anun be the unique expression of v as a linear combination of elements of B.
The coordinate vector of v with respect to B is

[x]B =

a1
...
an

 ∈ Fn.

Remark 12.2. Note that the order of the elements in the basis matters! When we talk about
coordinates, we need to keep track of this order, which is why the above definition refers to the basis
as an “ordered basis.” We will use the parenthesis notation instead of the curly brace notation to
indicate an ordered basis.

Example 12.3. Let p(x) = 1− 2x2 ∈ P2(R). Let B = (1, x, x2). Then

p(x) = 1 · 1 + 0 · x+ (−2) · x2

[p(x)]B =

 1
0
−2

 .

We could rearrange the basis like B′ = (1, x2, x). Then

p(x) = 1 · 1 + (−2) · x2 + 0 · x

[p(x)]B′ =

 1
−2
0

 .

If we pick the basis C = (1, x+ x2, x− x2) for P2(R), we obtain

p(x) = 1 · 1− 1 · (x+ x2) + 1 · (x− x2)

[p(x)]C =

 1
−1
1

 .

The point here is that, given an abstract (finite dimensional) vector space V , if we pick an
ordered basis we can represent the elements of V as numerical vectors. This is an extremely
powerful idea! We can go even further and find numerical representations (or matrices) of linear
transformations.
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Let V and W be finite dimensional vector spaces. Let B = (u1, . . . , un) be a basis for V , and let
C = (w1, . . . , wm) be a basis for W . For each 1 ≤ j ≤ n, we can consider the vector T (uj) ∈ W .
Since C is a basis for W , we have a unique decomposition

T (uj) = a1jw1 + · · ·+ amjwm

for some scalars a1j, . . . , amj. We keep track of the j index in this list of coefficients because the
scalars will depend on which vector uj we feed to T .

Definition 12.4. The coordinate matrix of T with respect to B and C, denoted [T ]CB, is the
m× n matrix defined by (

[T ]CB
)
ij
:= aij.

Observe that the jth column of [T ]CB is [T (uj)]C. The B subscript is the basis corresponding to
input coordinates while the C superscript is the basis corresponding to output coordinates.

Example 12.5. Let T : P3(R) → P2(R) be the derivative operator so T (p)(x) = p′(x). Let
B = (1, x, x2, x3) and C = (1, x, x2) be (ordered) bases of P3(R) and P2(R), respectively. We will
find [T ]CB. We compute the output of T for each element of the input basis B.

T (1) = 0 = 0 · 1 + 0 · x+ 0 · x2

T (x) = 1 = 1 · 1 + 0 · x+ 0 · x2

T (x2) = 2x = 0 · 1 + 2 · x+ 0 · x2

T (x3) = 3x2 = 0 · 1 + 0 · x+ 3 · x2

Then we find the coordinates of each output with respect to the output basis C.
[T (1)]C = (0, 0, 0)

[T (x)]C = (1, 0, 0)

[T (x2)]C = (0, 2, 0)

[T (x3)]C = (0, 0, 3)

The order of the input basis B determines the column order.

[T ]CB =

0 1 0 0
0 0 2 0
0 0 0 3


Before we continue exploring coordinate representation of linear transformations, we have the

following important fact.

Proposition 12.6. Let V and W be vector spaces with linear transformations T : V → W and
S : V → W . Let λ ∈ F . Then T + S and λT are linear as well.

Proof. Let v, v′ ∈ V and c ∈ F . Then

(T + S)(v + v′) = T (v + v′) + S(v + v′)

= T (v) + T (v′) + S(v) + S(v′)

= [T (v) + S(v)] + [T (v′) + S(v′)]

= (T + S)(v) + (T + S)(v′)

(T + S)(cv) = T (cv) + S(cv)

= cT (v) + cS(v)

= c(T + S)(v)
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Thus T + S is linear.
Let v, v′ ∈ V and c ∈ F . Then

(λT )(v + v′) = λT (v + v′)

= λ(T (v) + T (v′))

= λT (v) + λT (v′)

= (λT )(v) + (λT )(v′)

(λT )(cv) = λT (cv)

= λ(cT (v))

= (λc)T (v)

= c(λT )(v)

Thus λT is linear. □

Definition 12.7. We denote the set of linear transformations from V to W by L(V,W ).

Corollary 12.7.1. The set L(V,W ) is a vector space.

In the next two results, we prove that the process of taking a coordinate representation respects
the linear structure of L(V,W ).

Proposition 12.8. Let V and W be finite dimensional vector spaces with (ordered) bases B and
C respectively. Let T, S ∈ L(V,W ). Then

[T + S]CB = [T ]CB + [S]CB

[λT ]CB = λ[T ]CB

for all λ ∈ F .

Proof. Let B = (u1, . . . , un) and C = (w1, . . . , wm). Then

T (uj) = a1jw1 + · · ·+ amjwm

S(uj) = b1jw1 + · · ·+ bmjwm

for some scalars aij, bij ∈ F . We write

(T + S)(uj) = (a1j + b1j)w1 + · · ·+ (amj + bmj)wm(
[T + S]CB

)
ij
= aij + bij

=
(
[T ]CB

)
ij
+
(
[S]CB

)
ij

so [T + S]CB = [T ]CB + [S]CB.
We have

T (uj) = a1jw1 + · · ·+ amjwm

for some scalars aij ∈ F . Then

(λT )(uj) = (λa1j)w1 + · · ·+ (λamj)wm

([λT ]CB)ij = λaij

= λ([T ]CB)ij

so [λT ]CB = λ[T ]CB. □

End of lecture 15
We can rephrase the result in a more abstract way as follows.
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Corollary 12.8.1. Let V and W be finite dimensional vector spaces. Fix ordered bases B and
C of V and W respectively. Define ϕ : L(V,W ) → Mm×n(F) by ϕ(T ) = [T ]CB. Then ϕ is a linear
transformation.

When we pick a basis for the domain and a basis for the codomain, every linear transformation
is identified with a matrix. Example 11.6 shows that each matrix produces a linear transformation.
Soon we will be able to say that this construction proves ϕ is an isomorphism. Basically, L(V,W )
and Mm×n(F) are the “same” as vector spaces!

13. Composition of linear maps

Definition 13.1. Let T : V → W and S : W → U be functions. The composition of S and T
is the function S ◦ T : V → U defined by (S ◦ T )(v) = S(T (v)) for all v ∈ V .

Proposition 13.2. Let T : V → W and S : W → U be linear. Then S ◦ T : V → U is linear.

Proof. Let v, v′ ∈ V and c ∈ F . Then

(S ◦ T )(v + v′) = S(T (v + v′))

= S(T (v) + T (v′))

= S(T (v)) + S(T (v′))

= (S ◦ T )(v) + (S ◦ T )(v′)
(S ◦ T )(cv) = S(T (cv))

= S(cT (v))

= cS(T (v))

= c(S ◦ T )(v).

Therefore, S ◦ T is linear. □

Proposition 13.3. Let T, S1, S2 be linear transformations. Assume that the respective domains
and codomains are such that each of the compositions below makes sense.

(i) T ◦ (S1 + S2) = T ◦ S1 + T ◦ S2 and (S1 + S2) ◦ T = S1 ◦ T + S2 ◦ T
(ii) (T ◦ S1) ◦ S2 = T ◦ (S1 ◦ S2)
(iii) λ(S1 ◦ S2) = (λS1) ◦ S2 = S1 ◦ (λS2)

Proof. (i) We will prove the first statement. Let S1, S2 : U → V and T : V → W . Let u ∈ U .
By linearity of T ,

(T ◦ (S1 + S2))(u) = T (S1(u) + S2(u))

= T (S1(u)) + T (S2(u))

= (T ◦ S1)(u) + (T ◦ S2)(u).

Thus T ◦ (S1 + S2) = T ◦ S1 + T ◦ S2.
(ii) Let S2 : U → V , S1 : V → W , and T : W → X. Let u ∈ U . Then

((T ◦ S1) ◦ S2)(u) = (T ◦ S1)(S2(u))

= T (S1(S2(u)))

= T ((S1 ◦ S2)(u))

so (T ◦ S1) ◦ S2 = T ◦ (S1 ◦ S2).



MATH 115A - LINEAR ALGEBRA 37

(iii) We will prove the first equality. Let S2 : U → V and S1 : V → W . Let u ∈ U . By linearity
of S1,

λ(S1 ◦ S2)(u) = λS1(S2(u))

= (λS1)(S2(u)).

Thus λ(S1 ◦ S2) = (λS1) ◦ S2.
□

Remark 13.4. Note that composition is not commutative. If S◦T is defined, the other composition
T ◦ S may not even be well-defined, let alone equal to S ◦ T !

If we have two linear maps T and S between finite dimensional vector spaces, can we determine
a relationship between the coordinate matrices of T , S, and S ◦ T? Indeed, we have the following
result, which is the underlying motivation for the familiar and, initially, odd definition of matrix
multiplication.

Proposition 13.5. Let V , W , and U be finite dimensional vector spaces with (ordered) bases B,
C, and D respectively. Let T ∈ L(V,W ) and S ∈ L(W,U). Then

[S ◦ T ]DB = [S]DC [T ]
C
B.

Proof. Recall that the (i, j)th entry of a matrix product AB is given

(AB)ij =
∑
k

AikBkj.

Enumerate the elements of the bases as follows.

B = (v1, . . . , vn)

C = (w1, . . . , wm)

D = (u1, . . . , uℓ)

Let aij := ([S]DC )ij and let bij := ([T ]CB)ij. Note that

(S ◦ T )(vj) = S(T (vj)) = S

(
m∑
k=1

bkjwk

)
=

m∑
k=1

bkjS(wk)

=
m∑
k=1

bkj

ℓ∑
i=1

aikui =
m∑
k=1

ℓ∑
i=1

bkjaikui.

By commutativity and associativity of addition, we can reverse the order of the summations to get

(S ◦ T )(vj) =
ℓ∑

i=1

(
m∑
k=1

aikbkj

)
uj.

Thus, the (i, j)-th entry of [S ◦ T ]DB is
∑m

k=1 aikbkj. By definition of matrix multiplication, this is
precisely ([S]DC [T ]

C
B)ij. Thus

[S ◦ T ]DB = [S]DC [T ]
C
B.

□

Example 13.6. Let T : P3(R) → P2(R) and S : P2(R) → P3(R) be defined as

T (p)(x) = p′(x)

S(p)(x) =

∫ x

0

p(t) dt
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respectively. Let B = (1, x, x2, x3) and C = (1, x, x2). Recall from Example 12.5 that

[T ]CB =

0 1 0 0
0 0 2 0
0 0 0 3

 .

We can compute [S]BC as follows.

S(1) = x, [S(1)]B = (0, 1, 0, 0)

S(x) =
1

2
x2, [S(x)]B = (0, 0, 1/2, 0)

S(x2) =
1

3
x3, [S(x2)]B = (0, 0, 0, 1/3)

Thus

[S]BC =


0 0 0
1 0 0
0 1

2
0

0 0 1
3

 .

Recall that the Fundamental Theorem of Calculus states

d

dx

∫ x

0

p(t) dt = p(x).

Phrased differently, (T ◦ S)(p)(x) = p(x) so T ◦ S = IP2(R). We can verify that0 1 0 0
0 0 2 0
0 0 0 3



0 0 0
1 0 0
0 1

2
0

0 0 1
3

 =

1 0 0
0 1 0
0 0 1

 .

Since [IP2(R)]
C
C = I3, we have [T ◦ S]CC = [T ]CB[S]

B
C .

Finally, we state a result which in some sense captures the utility of passing to a coordinate
matrix. If you want to compute the coordinates of T (v), then multiply the coordinate matrix of
T by the coordinate vector of v.

Proposition 13.7. Let V and W be finite dimensional vector spaces with (ordered) bases B and
C respectively. Let T : V → W be linear, and let v ∈ V . Then

[T (v)]C = [T ]CB[v]B.

Proof. Let B = (v1, . . . , vn), C = (w1, . . . , wm). Write v = a1v1 + · · · anvn and bij := ([T ]CB)ij. Then

T (v) = T

(
n∑

j=1

ajvj

)

=
n∑

j=1

ajT (vj)

=
n∑

j=1

aj

m∑
i=1

bijwi

=
m∑
i=1

(
n∑

j=1

bijaj

)
wi.
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The ith entry of the coordinate vector [T (v)]C is
∑n

j=1 bijaj, which is precisely the ith entry of the

matrix vector product [T ]CB[v]B. Thus

[T (v)]C = [T ]CB[v]B.

□

Example 13.8. Let T : R2 → R2 be rotation by π
2
counterclockwise. Let B = {e1, e2} be the

standard basis for R2 and C = {(1, 1), (1,−1)}. To determine the matrix [T ]CB, we need to know
how T maps the elements of the input basis B. Then write the output in terms of the basis C.

T (1, 0) = (0, 1) =
1

2
(1, 1)− 1

2
(1,−1)

T (0, 1) = (−1, 0) = −1

2
(1, 1)− 1

2
(1,−1)

The first column of [T ]CB is [T (1, 0)]C and the second column of [T ]CB is [T (0, 1)]C. We have

[T ]CB =

(
1/2 −1/2
−1/2 −1/2

)
In order to determine how T maps a vector v ∈ R2 in C coordinates, we can multiply the column
vector [v]B by the matrix [T ]CB. Let v = 2e1 − e2. We obtain

[T (v)]C = [T ]CB[v]B =

(
1/2 −1/2
−1/2 −1/2

)(
2
−1

)
=

(
3/2
−1/2

)
.

Once we compute the matrix, applying the transformation is a quick computation.

End of lecture 16

14. Invertibility and isomorphisms

Definition 14.1. Let T : V → W . We say that T is invertible if there is another function
S : W → V such that S ◦ T = IV and T ◦ S = IW .

Example 14.2. Let f : [0,∞) → [0,∞) be given by f(x) = x2. Let g : [0,∞) → [0,∞) be defined
by g(x) =

√
x. Then

(f ◦ g)(x) = f(g(x))

= (
√
x)2

= x.

Since (f ◦ g)(x) = x for all x ∈ [0,∞), f ◦ g = I[0,∞). Similarly, one can check that (g ◦ f)(x) = x
for all x ∈ [0,∞). Thus f is invertible.

Proposition 14.3. Let T : V → W be linear. Suppose that T is invertible. Then the map
S : W → V satisfying S ◦ T = IV and T ◦ S = IW is unique and linear.

Proof. Suppose that S ′ : W → V also satisfies S ′ ◦ T = IV and T ◦ S ′ = IW . Then

S ′ = S ′ ◦ IW
= S ′ ◦ (T ◦ S)
= (S ′ ◦ T ) ◦ S
= IV ◦ S
= S.

Thus S ′ = S so S is unique.
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Next, we prove that S is linear. Let w,w′ ∈ W and λ ∈ F . Then

S(w + w′) = S (IW (w) + IW (w′))

= S ((T ◦ S)(w) + (T ◦ S)(w′)))

= S (T (S(w)) + T (S(w′)))

= S (T (S(w) + S(w′)))

= (S ◦ T )(S(w) + S(w′))

= IV (S(w) + S(w′))

= S(w) + S(w′)

S(λw) = S(λIW (w))

= S(λ(T ◦ S)(w))
= (S ◦ T )((λS)(w))
= (S ◦ T )(λS(w))
= IV (λS(w))

= λS(w).

Thus S is linear. □

Definition 14.4. Let T : V → W be an invertible linear map. The inverse of T , denoted T−1,
is the unique linear map T−1 : W → V such that T−1 ◦ T = IV and T ◦ T−1 = IW .

Proposition 14.5. Let T : V → W be linear. Then T is invertible if and only if T is both
injective and surjective.

Proof. (⇒) First, suppose that T is invertible. Let T (v) = 0 for some v ∈ V . Apply T−1 to both
sides of the equation to obtain T−1(T (v)) = T−1(0). Since T−1 is linear T−1(0) = 0 and v = 0.
Thus ker(T ) = {0}, and T is injective. Next, let w ∈ W . Since T (T−1(w)) = w, T is surjective.

(⇐) Assume that T is both injective and surjective. For each w ∈ W , there is a unique v ∈ V
such that T (v) = w. Define the function T−1 : W → V as T−1(w) = v. Then (T−1 ◦ T )(v) = v
and (T ◦ T−1)(w) = w so T is invertible. □

Corollary 14.5.1. Suppose that V and W are finite dimensional vector spaces. If T : V → W is
an invertible linear transformation, then dim(V ) = dim(W ).

Proof. Since T is invertible, it is injective. Thus ker(T ) = {0} so dim(ker(T )) = 0. Since T is
also surjective, im(T ) = W and dim(im(T )) = dim(W ). By Rank-Nullity Theorem, it follows that
dim(V ) = dim(W ). □

End of extra lecture on February 20

Definition 14.6. Let V and W be vector spaces. We say that V and W are isomorphic if there
is an invertible linear map T : V → W . In this case, we say that T is an isomorphism from V
to W . We also sometimes write V ∼= W .

Proposition 14.7. Let V and W be finite dimensional vector spaces with (ordered) bases B, C
respectively. A linear map T : V → W is invertible if and only if the coordinate matrix [T ]CB is
invertible. Moreover,

[T−1]BC =
(
[T ]CB

)−1
.
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Proof. (⇒) Suppose that T is invertible. Then, by definition, T−1 ◦ T = IV and T ◦ T−1 = IW .
Taking coordinate matrices gives

[T−1 ◦ T ]BB = [IV ]
B
B

[T ◦ T−1]CC = [IW ]CC.

By Proposition 13.5 and [IV ]
B
B = [IW ]CC = In, where n = dim(V ) = dim(W ), we have

[T−1]BC [T ]
C
B = In

[T ]CB[T
−1]BC = In.

Thus [T ]CB is invertible and
(
[T ]CB

)−1
= [T−1]BC .

(⇐) Suppose that [T ]CB is invertible. Let bij := ([T ]CB)
−1
ij . Let B = {v1, . . . , vn} and C =

{w1, . . . , wn}. Define S : W → V on C as

S(wj) := b1jv1 + · · ·+ bnjvn

and extend the definition of S to W by linearity. By definition, [S]BC = ([T ]CB)
−1. Then

[S ◦ T ]BB = [S]BC [T ]
C
B = ([T ]CB)

−1[T ]CB = In

so (S ◦ T )(vj) = vj for all 1 ≤ j ≤ n. By linearity, it follows that S ◦ T = IV . By a similar
argument, one can show that T ◦ S = IW . We conclude that T is invertible. □

Theorem 14.8. Let V,W be finite dimensional vector spaces. Then V and W are isomorphic if
and only if dim(V ) = dim(W ).

Proof. (⇒) Suppose that V ∼= W . By definition, there exists an invertible linear map T : V → W .
By Proposition 14.5.1, dim(V ) = dim(W ).

(⇐) Suppose that dim(V ) = dim(W ). Let

B := {v1, . . . , vn}
C := {w1, . . . , wn}

be bases for V and W respectively. Define T : V → W as follows. For a1v1 + · · · + anvn ∈ V ,
define

T (a1v1 + · · ·+ anvn) = a1w1 + · · ·+ anwn.

In other words, we are defining T by T (vj) := wj and “extending by linearity.” Recall that the
behavior of a linear map is completely determined by its behavior on a basis by Proposition 11.14.

First, note that T is clearly linear. Next, we claim that T is injective. Suppose that

T (a1v1 + · · ·+ anvn) = 0.

Then a1w1 + · · · + anwn = 0. Since C is a basis, it is linearly independent, so a1 = · · · = an = 0.
Thus a1v1 + · · · + anvn = 0, and ker(T ) = {0}. We conclude that T is injective by Proposition
11.21. Since dim(V ) = dim(W ), T is also surjective by Proposition 11.22. Thus T is invertible
and is an isomorphism from V to W . □

Corollary 14.8.1. Let V be an n-dimensional vector space over F . Then V ∼= Fn.

Remark 14.9. There are many transformations T : V → Fn that provide the isomorphism
in Corollary 14.8.1. Let B be a basis for the n-dimensional vector space V . The most useful
isomorphism is often T : V → Fn that sends a vector v ∈ V to the coordinate vector [v]B.
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Example 14.10. Let T : P3(R) → P3(R) be the derivative operator T (p)(x) = p′(x). Take the
basis B = {1, x, x2, x3} for P3(R). Example 13.6 shows that

[T ]BB =


0 1 0 0
0 0 2 0
0 0 0 3
0 0 0 0

 .

We note that [T ]BB is not full rank and, hence, not an invertible matrix. Proposition 14.7 implies
T is not an invertible linear transformation.

Example 14.11. Let V be an n-dimensional vector space with a basis B = (v1, . . . , vn), and let
W be an m-dimensional vector space with a basis C = (w1, . . . , wm). Recall the linear map

ϕ : L(V,W ) → Mm×n(F)

given by ϕ(T ) = [T ]CB from Corollary 12.8.1. We claim that ϕ is an isomorphism so

L(V,W ) ∼= Mm×n(F).

In other words, the vector spaces are essentially the same.
Indeed, first suppose that ϕ(T ) = 0m×n. Let v ∈ V . By Proposition 13.7,

[T (v)]C = 0m×n[v]B =

0
...
0

 ∈ Fm.

Thus T (v) = 0w1 + · · ·+ 0wm = 0 ∈ W , and T = 0 ∈ L(V,W ). We conclude that ker(ϕ) = {0} so
ϕ is injective. Next, we show that ϕ is surjective. Let A ∈ Mm×n(F). Define T : V → W on B by

T (vj) := a1jw1 + · · ·+ amjwm.

Extend the definition of T to V by linearity. By construction, ϕ(T ) = A. Thus ϕ is surjective and,
hence, ϕ is an isomorphism.

Since dim(Mm×n(F)) = mn, we have dim(L(V,W )) = mn. By Corollary 14.8.1,

L(V,W ) ∼= Mm×n(F) ∼= Fmn.

In lower division linear algebra, we basically treat every linear transformation like matrix multi-
plication. This statement justifies the approach!

Example 14.12. Let T : R2 → R2 be projection onto the line y = x. Let B = {e1, e2} be the
standard basis for R2. To construct [T ]BB, we need to project e1 and e2 onto the line y = x. Take
the vector v = e1 + e2 on the line. Recall the following projection formula from Math 33A.

projve1 =
(e1 · v
v · v

)
v =

1

2
(1, 1)

projve2 =
(e2 · v
v · v

)
v =

1

2
(1, 1)

The first and second columns of [T ]BB are projve1 and projve2 respectively so

[T ]BB =

(
1/2 1/2
1/2 1/2

)
.

Subtract the first row from the second row to obtain

[T ]BB →
(
1/2 1/2
0 0

)
.
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As a result, [T ]BB is not full rank and, hence, not an invertible matrix. Proposition 14.7 implies
that T is not an invertible linear transformation.
By Proposition 14.5, we could also study the kernel and image of T to determine invertibility.

Assume that T (v) = 0 for some v ∈ R2. Thinking geometrically, v must be perpendicular to
the line y = x. We find ker(T ) = Span({e1 − e2}) and dim(ker(T )) = 1. We conclude that T
is not injective. By Rank-Nullity Theorem, dim(im(T )) = dim(R2) − dim(ker(T )) = 1. Since
dim(im(T )) = 1 < 2 = dim(R2), T is not surjective either.

15. Change of coordinates

We will begin with a motivating example that resembles Math 33A.

Example 15.1. Let V = R2 and T : V → V reflection about the line y = 2x in the xy-plane. Let
v = e1+2e2 be a vector on the line. The reflection formula from Math 33A is refvu = 2projvu−u.
With respect to the standard basis B = {e1, e2},

T (e1) = 2
(e1 · v
v · v

)
v − e1 = −3

5
e1 +

4

5
e2

T (e2) = 2
(e2 · v
v · v

)
v − e2 =

4

5
e1 +

3

5
e2

[T ]BB =

(
−3/5 4/5
4/5 3/5

)
.

If we were only given the basis and the matrix, it would not be immediately clear what is occurring
geometrically.

Instead, pick the basis C = {e1 + 2e2,−2e1 + e2} so

T (e1 + 2e2) = e1 + 2e2

T (−2e1 + e2) = −(−2e1 + e2)

[T ]CC =

(
1 0
0 −1

)
.

We see that the first basis element is fixed and the second basis element, orthogonal to the first, is
flipped. Thus T represents reflection about the line in the direction of the first basis vector. The
geometry is more apparent from the basis C than from the standard basis B. A change of reference
can sometimes uncover information about the linear transformation.

End of lecture 17
For the time being, we will focus on linear maps T to and from a single vector space V . In this

case, we will call T a linear operator on V . We write

L(V ) := L(V, V )

to denote the space of all linear operators on V . If B is a basis for a finite dimensional space V
then we will write

[T ]B := [T ]BB
for the coordinate matrix with respect to B in both the domain and codomain.

Definition 15.2. Let V be a finite dimensional vector space. Let B,B′ be two different bases of
V . The matrix Q := [IV ]

B′
B is the change of coordinate matrix from B to B′.

Intuitively, the change of coordinate matrix does not alter vectors or the geometry of transfor-
mations. The change of coordinate matrix merely switches from one reference frame to another.
The coordinates, or the way we describe a vector, will change, but the underlying vector remains
the same.
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Example 15.3. Let V = P1(R) with p(x) = 1 + x ∈ P1(R). Let B = (1, x) be the standard
ordered basis while B′ = (1− x, 1 + x). We can write

p(x) = 1 · 1 + 1 · x
p(x) = 0 · (1− x) + 1 · (1 + x).

Thus

[p(x)]B =

(
1
1

)
[p(x)]B′ =

(
0
1

)
.

Let Q = [IV ]
B′
B be the change of coordinate matrix from B to B′. Then [p(x)]B′ = Q[p(x)]B. The

change of coordinate matrix does not change the underlying vector, but it does change how the
vector is represented.

Since Q is a matrix representation for IV , we can construct Q by applying IV to the basis
elements of B, the input basis. We find

IV (1) = 1

IV (x) = x.

The columns of Q are these outputs written in B′ coordinates. Then

IV (1) = 1 =
1

2
· (1− x) +

1

2
· (1 + x)

IV (x) = x = −1

2
· (1− x) +

1

2
· (1 + x)

implies

Q =
(
[IV (1)]B′ [IV (x)]B′

)
=

(
1/2 −1/2
1/2 1/2

)
.

We can confirm [p(x)]B′ = Q[p(x)]B since(
0
1

)
=

(
1/2 −1/2
1/2 1/2

)(
1
1

)
.

Theorem 15.4. Let V be a finite dimensional vector space, and let B,B′ be two different bases
of V . Let Q = [IV ]

B′
B be the change of coordinate matrix from B to B′.

(i) The matrix Q is invertible.
(ii) For any v ∈ V ,

[v]B′ = Q[v]B.

(iii) For any T ∈ L(V ),

[T ]B = Q−1[T ]B′Q.
Proof.

(i) Since IV : V → V is clearly invertible, Proposition 14.7 implies that Q is invertible.
(ii) By Proposition 13.7,

[v]B′ = [IV (v)]B′ = [IV ]
B′

B [v]B = Q[v]B.

(iii) By Proposition 13.5,

[T ]B = [IV ◦ T ◦ IV ]B = [IV ]
B
B′ [T ]B′ [IV ]

B′

B .
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Since Q−1 =
(
[IV ]

B′
B
)−1

= [I−1
V ]BB′ = [IV ]

B
B′ , it follows that

[T ]B = Q−1[T ]B′Q.

□

Here is a possibly useful way to visualize all of this nonsense that we’ve talked about with
coordinate representations and coordinate changes. Suppose we have a linear operator T ∈ L(V )
on a finite dimensional vector space. This is represented by the following diagram.

V VT

Next, choose a basis B for V , and let fB : V → Fn be the map that sends a vector v ∈ V to its
coordinate vector [v]B. That is, fB(v) = [v]B. These coordinate changes allow us to pass to a new
“equivalent” row of the diagram. Corresponding to the map T is the map Fn → Fn given by
multiplication by [T ]B.

V V

Fn Fn

fB

T

fB

[T ]B

On the other hand, we could pick a different basis B′ and get a different, yet equivalent, row!

Fn Fn

V V

Fn Fn

[T ]B′

fB

T

fB′

fB

fB′

[T ]B

The change of coordinate matrix is the direct translation between the bottom and top row.

Fn Fn

V V

Fn Fn

[T ]B′

fB

T

fB′

fB

fB′

Q

[T ]B

Q

Definition 15.5. Two operators T ∈ L(V ) and S ∈ L(W ) are similar if there is an isomorphism
ϕ : V → W such that T = ϕ−1 ◦ S ◦ ϕ. Likewise, two matrices A,B ∈ Mn×n(F) are similar if
there is an invertible matrix Q ∈ Mn×n(F) such that A = Q−1BQ.

You should think about similar operators or similar matrices as objects that represent the “same”
transformation, up to a change in coordinates or change in perspective in a different vector space.

Example 15.6. Let P (R) be the vector space of polynomials in any degree with coefficients in R.
Let R∞ be the vector space of sequences with finitely many non-zero entries. That is,

R∞ := {(a0, a1, a2, . . . ) : aj ̸= 0 for finitely many j}.
First, we claim that P (R) ∼= R∞. Let ϕ : P (R) → R∞ be given by

ϕ(a0 + a1x+ · · ·+ anx
n) = (a0, a1, . . . , an, 0, . . . ).

It is straightforward to check that ϕ is linear, injective, and surjective.
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Next, we define two operators, one on P (R) and one on R∞. Let T : P (R) → P (R) be given by
T (p)(x) := xp(x). Let S : R∞ → R∞ be the “right-shift” operator given by

S(a0, a1, a2, . . . ) := (0, a0, a1, . . . ).

We claim that T and S are similar or, in other words, fundamentally represent the “same” trans-
formation. Indeed, note that

(ϕ−1 ◦ S ◦ ϕ)(a0 + a1x+ · · · anxn) = ϕ−1(S(ϕ(a0 + a1x+ · · · anxn)))

= ϕ−1(S(a0, a1, . . . , an, 0, 0, . . . ))

= ϕ−1(0, a0, . . . , an−1, an, 0, . . . )

= a0x+ a1x
2 + · · ·+ anx

n+1

= x(a0 + a1x+ · · · anxn)

= T (a0 + a1x+ · · ·+ anx
n).

Thus T = ϕ−1 ◦ S ◦ ϕ so T and S are similar. The following diagram represents this situation.

R∞ R∞

P (R) P (R)

S

ϕ

T

ϕ

End of lecture 18

16. Diagonalization, eigenvalues, and eigenvectors

We once again look to Example 15.1 for motivation. Let T : R2 → R2 be reflection about the
line y = 2x in the xy-plane with C = {e1 +2e2,−2e1 + e2}. The matrix [T ]C is easy to understand
geometrically because it is diagonal. Each basis vector is only multiplied by a scalar via T so
the information of the linear operator is encoded in the finite basis and a finite list of multiplying
factors. The basis vectors of C in some sense provide the most “natural” reference frame for T .
In the following sections, we will develop tools to find the most “natural” basis for a given linear
operator.

Definition 16.1. Let V be a finite dimensional vector space, and let T ∈ L(V ). The operator T
is diagonalizable if there is an (ordered) basis B of V such that [T ]B is a diagonal matrix.

Example 16.2. Suppose we have a diagonalizable operator T ∈ L(V ) and a basis B = (v1, . . . , vn)
such that [T ]B is diagonal. Let aij denote the (i, j)th entry of [T ]B. Then, as usual, we have

T (vj) = a1jv1 + · · ·+ anjvn.

Since [T ]B is diagonal, aij = 0 if i ̸= j. In the above expression, all terms are 0 except for the one
corresponding to ajj. Thus

T (vj) = ajjvj.

This suggests that an operator will be diagonalizable if we can find a basis {v1, . . . , vn} of V such
that T (vj) = λjvj for some scalars λj. The scaling factors ajj would ultimately be the diagonal
entries of the resulting coordinate matrix.

Definition 16.3. Let V be a vector space, and let T ∈ L(V ). A non-zero vector v ∈ V is an
eigenvector of T with associated eigenvalue λ if T (v) = λv for some λ ∈ F .

Theorem 16.4. Let V be finite dimensional, and let T ∈ L(V ). Then T is diagonalizable if and
only if there is a basis B of V consisting of eigenvectors of T .
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Proof. (⇒) Suppose that T is diagonalizable. Then there is a basis B = (v1, . . . , vn) such that [T ]B
is diagonal. The computation in Example 16.2 shows that T (vj) = ajjvj, where aij is the (i, j)th
entry of [T ]B. Thus B is a basis consisting of eigenvectors of T .

(⇐) Suppose that B = (v1, . . . , vn) is a basis consisting of eigenvectors of T with associated
eigenvalues λ1, . . . , λn ∈ F . Since T (vj) = λjvj, it follows that [T (vj)]B is the column vector with
λj in the jth row and 0 elsewhere. Thus

[T ]B =

λ1 0
. . .

0 λn

 ,

and T is diagonalizable. □

Example 16.5. Consider the transformation T : R2 → R2 defined by

T

(
x
y

)
=

(
1 2
2 1

)(
x
y

)
.

Let v1 =

(
1
1

)
and v2 =

(
1
−1

)
. Note that

T

(
1
1

)
=

(
3
3

)
= 3

(
1
1

)
T

(
1
−1

)
=

(
−1
1

)
= −1

(
1
−1

)
.

Thus v1 is an eigenvector of T with eigenvalue 3, and v2 is an eigenvector of T with eigenvalue
−1. It is straightforward to verify that B = (v1, v2) is a basis of V . Theorem 16.4 implies that T
is diagonalizable, and

[T ]B =
(
[T (v1)]B [T (v2)]B

)
=

(
3 0
0 −1

)
.

Example 16.6. Let C∞(R) denote the vector space of infinitely differentiable functions f : R → R
(that is, functions whose derivatives of all orders exist). Let T : C∞(R) → C∞(R) be given by
T (f)(x) = f ′(x). Fix λ ∈ R, and let f(x) = eλx. Then

T (f)(x) = f ′(x) = λeλx = λf(x).

Since T (f) = λf , it follows that f is an eigenvector of T with eigenvalue λ. Thus every single real
number is an eigenvalue of T ! However, it does not make sense to ask if T is diagonalizable. The
vector space C∞(R) is infinite dimensional, and, as a result, there are no matrix representations
of linear operators on C∞(R).

At this point, we do not have a good method for identifying eigenvalues or eigenvectors of a
linear operator. If we try to solve for eigenvalues and eigenvectors simultaneously, we produce a
non-linear system of equations since the eigenvector components are multiplied by the eigenvalue.
The following result provides conditions for finding an eigenvalue. With an eigenvalue, we can find
eigenvectors by solving a system of linear equations.

Proposition 16.7. Let V be finite dimensional, and let T ∈ L(V ). Fix λ ∈ F . The following
four statements are equivalent.

(i) The element λ ∈ F is an eigenvalue of T .
(ii) The operator T − λI is not injective.
(iii) The operator T − λI is not surjective.
(iv) The operator T − λI is not invertible.
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Proof. Assume (i) and prove (ii). Since λ is an eigenvalue of T , there is a non-zero vector v ∈ V
such that T (v) = λv. Thus (T − λI)(v) = 0 and v ∈ ker(T − λI). Since v ̸= 0, it follows that
T − λI is not injective.

Assume (ii) and prove (iii). Since T − λI is not injective and the dimensions of the domain and
codomain are equal, Proposition 11.22 implies T − λI is not surjective.
Assume (iii) and prove (iv). Since T − λI is not surjective, Proposition 14.5 implies T = λI is

not invertible.
Assume (iv) and prove (i). Since T −λI is not invertible and the dimensions of the domain and

codomain are equal, Propositions 14.5 and 11.22 imply T − λI is not injective. Thus there is a
non-zero vector v ∈ ker(T − λI) so (T − λI)(v) = 0. Rearranging, we have T (v) = λv so λ is an
eigenvalue of T . □

Example 16.8. Consider the transformation T : R2 → R2 defined by

T

(
x
y

)
=

(
1 1
0 1

)(
x
y

)
.

Fix λ ∈ R and consider the operator T − λI. To identify eigenvalues of T , we want to understand
when T − λI is not injective. Let B be the standard basis of R2 so

[T − λI]B = [T ]B − λ[I]B =

(
1 1
0 1

)
− λ

(
1 0
0 1

)
=

(
1− λ 1
0 1− λ

)
.

We can immediately see that if λ = 1, the operator T − λI will not be invertible. Indeed,(
0 1
0 0

)(
1
0

)
=

(
0
0

)

so T − I is not injective, and λ = 1 is an eigenvalue of T . Suppose λ ̸= 1 and (T − λI)

(
x
y

)
is the

zero vector. Then (
0
0

)
=

(
x+ y
y

)
− λ

(
x
y

)
=

(
(1− λ)x+ y
(1− λ)y

)
.

Since 1− λ ̸= 0, the second component implies y = 0. Then (1− λ)x = 0 so, similarly, x = 0. We
conclude that T − λI is injective when λ ̸= 1 so λ ̸= 1 is not an eigenvalue of T .
For the only eigenvalue λ = 1, we find ker(T −I) = Span{(1, 0)}. Since dim(R2) = 2, there is no

way to produce a basis of R2 with only eigenvectors of T . Therefore, T should not be diagonalizable.
We formalize this argument later in Theorem 16.14. For now, we can take a geometric approach to
this problem. The linear transformation described by T is a horizontal shear. The only direction
that is fixed by T is the x-axis. Intuitively, this should indicate that there is no way to form a
basis for R2 out of eigenvectors.

End of lecture 19

Example 16.9. Let V be a vector space with T ∈ L(V ). Suppose v1 and v2 are eigenvectors with
corresponding eigenvalues λ1 and λ2. If λ1 ̸= λ2, we will show that {v1, v2} is linearly independent.
Let a1, a2 ∈ F such that

a1v1 + a2v2 = 0.
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Apply T to both sides to obtain

T (a1v1 + a2v2) = T (0)

a1T (v1) + a2T (v2) = 0

a1λ1v1 + a2λ2v2 = 0.

By multiplying the original equation by λ2, we have

a1λ2v1 + a2λ2v2 = 0.

Subtracting the two equations,
a1(λ2 − λ1)v1 = 0.

Since v1 ̸= 0 and λ2 ̸= λ1, we conclude that a1 = 0. Returning to the original equation, v2 ̸= 0
implies a2 = 0. Therefore, {v1, v2} is linearly independent.

We can extend the argument of Example 16.9 using induction.

Proposition 16.10. Let T ∈ L(V ), and suppose that v1, . . . , vk ∈ V are eigenvectors of T with
associated eigenvalues λj. If all λj’s are distinct (that is, if λi ̸= λj for all i, j) then {v1, . . . , vk} is
linearly independent.

Proof. We will proceed via induction on the number of vectors k. As a base case, suppose k = 1.
Proposition 9.6 implies that {v1} is linearly independent since v1 ̸= 0.
Assume the statement holds for k. We will prove the claim for k + 1. Suppose that v1, . . . , vk+1

are eigenvectors of T with associated distinct eigenvalues λ1, . . . , λk+1. Suppose further that

a1v1 + · · ·+ ak+1vk+1 = 0

for some scalars a1, . . . , ak+1 ∈ F . Apply T to both sides to obtain

T (a1v1 + · · ·+ ak+1vk+1) = T (0)

a1T (v1) + · · ·+ ak+1T (vk+1) = 0

a1λ1v1 + · · ·+ ak+1λk+1vk+1 = 0.

On the other hand, multiply both sides of the original equation by λk+1 to obtain

a1λk+1v1 + · · ·+ ak+1λk+1vk+1 = 0.

By subtracting the two equations, we have

a1(λk+1 − λ1)v1 + · · ·+ ak(λk+1 − λk)vk = 0.

By the inductive hypothesis, {v1, . . . , vk} is linearly independent so aj(λk+1 − λj) = 0 for each
1 ≤ j ≤ n. Since λk+1 − λj ̸= 0 for 1 ≤ j ≤ k, we find aj = 0 for 1 ≤ j ≤ n. Returning to the
original equation,

ak+1vk+1 = 0.

Since vk+1 ̸= 0, we have ak+1 = 0. Therefore, {v1, . . . , vk+1} is linearly independent. □

Corollary 16.10.1. Let V be finite dimensional, and let T ∈ L(V ). Then T has at most dim(V )
distinct eigenvalues.

Proof. Let λ1, . . . , λk be distinct eigenvalues. Let vj be an eigenvector associated to λj. By
Proposition 16.10, {v1, . . . , vk} is linearly independent. Proposition 10.13(iii) proves k ≤ dim(V ).

□

Corollary 16.10.2. Let V be finite dimensional, and suppose that T ∈ L(V ) has dim(V ) distinct
eigenvalues. Then T is diagonalizable.
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Proof. Let n = dim(V ) and λ1, . . . , λn be the distinct eigenvalues of T . Let vj be an eigenvector
associated to λj. Then S = {v1, . . . , vn} is a linearly independent set in V . Since n = dim(V ), S
is a basis for V by Proposition 10.13(ii). Thus V has a basis consisting of eigenvectors of T so T
is diagonalizable by Theorem 16.4. □

Example 16.11. Let T : P1(R) → P1(R) be T (p)(x) = xp′(x). An eigenvector of T would
be a polynomial for which xp′(x) is a constant multiple of p(x). By guessing, we find that the
polynomials p(x) = 1 and q(x) = x satisfy T (p)(x) = 0 and T (q)(x) = x. Therefore, p is an
eigenvector of T with eigenvalue 0 and q is an eigenvector of T with eigenvalue 1. Proposition
16.10 implies that B = {p, q} is linearly independent. Since dim(P1(R)) = 2, the set B is a basis
for P1(R) and T is diagonalizable. We find

[T ]B =

(
0 0
0 1

)
.

Note that P1(R) ∼= R2. If we were instead looking at the vector space R2, a matrix like [T ]B
would represent projection onto the line spanned by the second basis vector of B along the span of
the first basis vector of B. The linear operator T should be similar to a projection transformation
operator on R2.

Proposition 16.12. Suppose T, S ∈ L(V ) are similar. Then T and S have the same eigenvalues.

Proof. Let ϕ ∈ L(V ) be an isomorphism such that T = ϕ−1 ◦ S ◦ ϕ. Let λ ∈ F be an eigenvalue
of S. Then S − λI is not injective. We claim that T − λI is not injective as well. Note that

T − λI = (ϕ−1 ◦ S ◦ ϕ)− λI

= (ϕ−1 ◦ S ◦ ϕ)− λ(ϕ−1 ◦ I ◦ ϕ)
= ϕ−1 ◦ (S − λI) ◦ ϕ.

Let v ∈ ker(S − λI) be non-zero. Define w := ϕ−1(v) ∈ V . Since ϕ−1 is injective, w ̸= 0. We have

(T − λI)(w) = (ϕ−1 ◦ (S − λI) ◦ ϕ)(w)
= ϕ−1((S − λI)(v))

= ϕ−1(0)

= 0.

Since w ̸= 0, the operator T − λI is not injective, and λ is an eigenvalue of T .
By a symmetric argument, if λ is an eigenvalue of T , then λ is also an eigenvalue of S. Therefore,

T and S have the same eigenvalues. □

The following definition and result provide a useful equivalent condition for diagonalizability.

Definition 16.13. Let λ ∈ F be an eigenvalue of T ∈ L(V ). The eigenspace of λ is the subspace
of all eigenvectors associated to λ, that is,

Eλ(T ) := ker(T − λI).

The geometric multiplicity of λ, when defined, is dim(Eλ(T )).

Theorem 16.14. Let V be a finite dimensional vector space. Then T ∈ L(V ) is diagonalizable if
and only if

V = Eλ1(T )⊕ · · · ⊕ Eλk
(T )

where λ1, . . . , λk are the (distinct) eigenvalues of T .
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Proof. (⇒) Suppose that T is diagonalizable. Let λ1, . . . , λk be the distinct eigenvalues of T .
Theorem 16.4 guarantees a basis

(v11, . . . , v
1
j1
, . . . , vk1 , . . . , v

k
jk
)

of V consisting of eigenvectors of T . The eigenvectors {vi1, . . . , viji} correspond to the eigenvalue
λi. We have to show that V = Eλ1(T ) + · · ·+ Eλk

(T ). Fix v ∈ V . Write

v =
(
a11v

1
1 + · · ·+ a1j1v

1
j1

)
+ · · ·+

(
ak1v

k
1 + · · ·+ akjkv

k
jk

)
.

Thus v ∈ Eλ1(T ) + · · ·+ Eλk
(T ).

We want to show that Eλi
(T )∩ (Eλ1(T ) + · · ·+Eλi−1

(T ) +Eλi+1
(T ) + · · ·+Eλk

(T )) = {0}. Let
v ∈ Eλi

(T ) ∩ (Eλ1(T ) + · · ·+ Eλi−1
(T ) + Eλi+1

(T ) + · · ·+ Eλk
(T )). Then

v = vi

v = v1 + · · ·+ vi−1 + vi+1 + · · ·+ vk

for vj ∈ Eλj
(T ). We have

vi = v1 + · · ·+ vi−1 + vi+1 + · · ·+ vk

0 = v1 + · · ·+ vi−1 − vi + vi+1 + · · ·+ vk.

Thus {v1, . . . , vk} is not linearly independent. The contrapositive to Proposition 16.10 implies that
vj = 0 for some 1 ≤ j ≤ k. Repeated use of this argument proves that v = vi = 0.
(⇐) Suppose that V = Eλ1(T )⊕ · · · ⊕Eλk

(T ). Let Bi = (vi1, . . . , v
i
ji
) be a basis for the subspace

Eλi
(T ) for each 1 ≤ i ≤ k. Note that each element of Bi is an eigenvector of T with eigenvalue λi.

We claim that B := B1 ∪ · · · ∪ Bk is a basis of V . Fix v ∈ V . Since V = Eλ1(T ) + · · · + Eλk
(T ),

we can write v = v1 + · · ·+ vk where each vi ∈ Eλi
. Further, vi = ai1v

i
1 + · · ·+ aijiv

i
ji
so

v =
(
a11v

1
1 + · · ·+ a1j1v

1
j1

)
+ · · ·+

(
ak1v

k
1 + · · ·+ akjkv

k
jk

)
.

Thus Span(B) = V . By assumption, {vi1, . . . , viji} is linearly independent.

We want to show that B is linearly independent. Let aℓm ∈ F be such that(
a11v

1
1 + · · ·+ a1j1v

1
j1

)
+ · · ·+

(
ak1v

k
1 + · · ·+ akjkv

k
jk

)
= 0.

We can rearrange the equation to obtain(
a11v

1
1 + · · ·+ a1j1v

1
j1

)
+ · · ·+

(
ak−1
1 vk−1

1 + · · ·+ ak−1
jk−1

vk−1
jk−1

)
= −

(
ak1v

k
1 + · · ·+ akjkv

k
jk

)
.

The vector on the left is an element of Eλ1(T ) + · · ·+Eλk−1
(T ) while the vector on the right is an

element of Eλk
(T ). Since the vectors are equal, it is an element of Eλk

(T )∩Eλ1(T )+· · ·+Eλk−1
(T ).

By the definition of the direct sum, the vector must be the zero vector. In other words,

ak1v
k
1 + · · ·+ akjkv

k
jk
= 0.

Since Bi is linearly independent, akm = 0 for all 1 ≤ m ≤ jk. Repeat the argument for each
1 ≤ ℓ ≤ k to prove that aℓm = 0 for all 1 ≤ ℓ ≤ k and 1 ≤ m ≤ jℓ. Therefore, B is linearly
independent and, hence, a basis for V . We conclude that T is diagonalizable by Theorem 16.4. □

Corollary 16.14.1. Let V be a finite dimensional vector space. Then T ∈ L(V ) is diagonalizable
if and only if the sum of the geometric multiplicities of all eigenvalues of T is dim(V ). That is,

k∑
j=1

dim(Eλj
(T )) = dim(V ).

Proof. Apply Proposition 10.17.1 to the result of Theorem 16.14. □
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End of lecture 20
We introduce another example to demonstrate where diagonalizability can fail.

Example 16.15. Consider the map T : R2 → R2 defined by T (x, y) = (−y, x). Geometrically,
this map rotates every vector counterclockwise by 90 degree. From this description, it should be
clear that there are no eigenvalues, but we will prove this carefully. Fix λ ∈ R and consider the
operator T − λI. Note that

(T − λI)(x, y) = T (x, y)− λ(x, y) = (−y − λx, x− λy).

We claim that T −λI is injective. Suppose (T −λI)(x, y) = (0, 0). We obtain the following system
of equations. {

y + λx = 0

x− λy = 0

The second equation implies x = λy. Substitute into the first equation to obtain y + λ(λy) = 0.
Factor out y so y(1 + λ2) = 0. Since 1 + λ2 > 0, we have y = 0. Then x = λy so x = 0. We
conclude that ker(T − λI) = {0}, and T − λI is injective. Since T − λI is injective for all λ ∈ R,
there are no eigenvalues of T over R.

We should contrast Example 16.15 to that of Example 16.8. In Example 16.8, the horizontal
shear operator is not diagonalizable over any field. There is at most one eigenvalue for the operator,
and the eigenvalue produces no more than one corresponding eigenvector. However, the rotation
operator in Example 16.15, while not diagonalizable over R, is diagonalizable over C. The following
results indicate that the choice of field can matter.

Theorem 16.16. Let V be a finite dimensional vector space over C. Let T ∈ L(V ). Then T has
an eigenvalue.

The proof is a classic argument that uses the Fundamental Theorem of Algebra below.

Theorem 16.17 (Fundamental Theorem of Algebra). Any polynomial p ∈ P (C) can be completely
factored into linear parts.

Proof of Theorem 16.16. Let n = dim(V ). Fix a non-zero vector v ∈ V . Consider the following
list of vectors

v, T (v), T 2(v), . . . , T n(v)

where by T k we mean T composed with itself k times. Since the list has n + 1 vectors, either
there will be repeats among the vectors or there will be a linear dependence among the vectors by
Proposition 10.13(iii). In either case, there exist scalars a0, . . . , an ∈ C, not all 0, such that

a0v + a1T (v) + a2T
2(v) + · · ·+ anT

n(v) = 0

(a0I + a1T + a2T
2 + · · ·+ T n)(v) = 0.

By the Fundamental Theorem of Algebra, the left-hand side can be factored as

c[(T − λ1I) ◦ (T − λ2I) ◦ · · · ◦ (T − λnI)](v) = 0

where λ1, . . . , λn are the (possibly repeated) complex roots of the polynomial a0+a1z+ · · ·+anz
n.

Since v ̸= 0, the operator (T − λ1I) ◦ (T − λ2I) ◦ · · · ◦ (T − λnI) is not injective and, hence, not
invertible. Thus at least one of the factors, say (T − λjI), is not invertible so λj is an eigenvalue
of T . □

Even over C, there will be linear operators that are not diagonalizable as in Example 16.8. How-
ever, working over C, as opposed to R, provides a better framework for checking diagonalizability
since every linear operator has at least one eigenvalue.
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Example 16.18. We will revisit Example 16.15 over C. Consider the map T : C2 → C2 defined
by T (x, y) = (−y, x). We find the eigenvalue eigenvector pairings below.

T (i, 1) = (−1, i) = i(i, 1)

T (−i, 1) = (−1,−i) = −i(−i, 1)

We can show ((i, 1), (−i, 1)) is a basis for C2. Therefore, T is diagonalizable by Theorem 16.4.

17. Determinant and the characteristic polynomial

Thus far, we have powerful results about when a linear operator is diagonalizable. However, we
do not have a simple computational method for finding eigenvalues and eigenvectors. In order to
develop such a method, we will first review some facts about the determinant. We will use the
determinant to define the characteristic polynomial, an algebraic tool for finding eigenvalues.

Proposition 17.1. There exists a map det : Mn×n(F) → F called the determinant that satisfies
the following properties.

(i) det

(
a b
c d

)
= ad− bc

(ii) det(AB) = (detA)(detB)
(iii) det(A−1) = (detA)−1

(iv) A is invertible if and only if detA ̸= 0

Example 17.2. We might need to take determinants of larger square matrices. For this, we

can proceed by cofactor expansion. Let A be an n × n matrix. Define the minor Âij to be the
(n−1)×(n−1) matrix where the ith row and jth column of A have been removed. The determinant
of A can be computed in terms of the determinants of these minors as

det(A) =
n∑

j=1

(−1)i+jAij det(Âij).

We call the process expanding along the ith row since each minor was chosen by removing the ith
row. We build the computation for det(A) out of the determinants of smaller matrices. Thus the
definition of the determinant of a 2× 2 matrix is sufficient for computing the determinant of any
n × n matrix. However, this process becomes extremely tedious for large choices of n. We will
predominantly work with 2× 2 and 3× 3 matrices in this course.

To practice, we will compute the determinant of

A =

0 1 2
2 −1 3
1 3 2


Expanding along the first row,

det(A) = (−1)1+1 · 0 · det
(
−1 3
3 2

)
+ (−1)1+2 · 1 · det

(
2 3
1 2

)
+ (−1)1+3 · 2 · det

(
2 −1
1 3

)
= −(2 · 2− 3 · 1) + 2(2 · 3− (−1) · 1)
= −1 + 14

= 13.

Since det(A) ̸= 0, we conclude that A is an invertible matrix.

End of lecture 21
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Definition 17.3. Let V be an n-dimensional vector space. Let T ∈ L(V ) and B be a basis of V .
The characteristic polynomial of T is

cT (t) := det([T ]B − tIn)

Proposition 17.4. Let V be a finite dimensional vector space, and let T ∈ L(V ).

(i) The characteristic polynomial does not depend on the choice of basis in Definition 17.3.
(ii) The eigenvalues of T are precisely the zeroes of cT (t), viewed as a polynomial over F .

Proof.

(i) Let B′ be another basis of V with Q the change of coordinate matrix from B to B′. Then

det ([T ]B − tIn) = det
(
Q−1[T ]B′Q− tQ−1InQ

)
= det

(
Q−1([T ]B′ − tIn)Q

)
= det(Q−1) det([T ]B′ − tIn)(detQ)

= (detQ)−1(detQ) det([T ]B′ − tIn)

= det([T ]B′ − tIn).

(ii) Note that T − tI is invertible if and only if [T − tI]B = [T ]B− tIn is invertible. Equivalently,
the matrix is invertible if and only if

cT (t) = det([T ]B − tIn) ̸= 0.

Thus the eigenvalues of T are precisely the scalars λ ∈ F such that cT (λ) = 0.

□

For the remainder of this section, we will assume that F = C so that every characteristic
polynomial factors completely into linear terms.

Definition 17.5. Let V be a finite dimensional vector space with T ∈ L(V ). Let λ be an eigenvalue
of T . The algebraic multiplicity of λ is the largest possible k for which (t − λ)k is a factor of
the characteristic polynomial cT (t). In other words, the algebraic multiplicity of λ is how many
times it appears as a root of the characteristic polynomial.

Proposition 17.6. Let V be a finite dimensional vector space with T ∈ L(V ). Let λ be an
eigenvalue of T with algebraic multiplicity m. Then 1 ≤ dim(Eλ(T )) ≤ m.

Proof. Choose an ordered basis (v1, . . . , vp) for Eλ(T ) and extend to an ordered basis

B = (v1, . . . , vp, vp+1, . . . , vn)

for V by Proposition 10.13. Therefore,

[T ]B =

(
λIp B
0 C

)
where B is a p× (n− p) matrix, 0 is an (n− p)× p matrix, and C is an (n− p)× (n− p) matrix.
We can compute the characteristic polynomial

cT (t) = det([T ]B − tIn)

= det

(
(λ− t)Ip B

0 C − tIn−p

)
= det((λ− t)Ip) det(C − tIn−p)

= (λ− t)p det(C − tIn−p).

Thus (λ− t)p is a factor of cT (t), and the algebraic multiplicity of λ is at least p. □
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Proposition 17.7. Let V be a finite dimensional vector space with T ∈ L(V ). Then T is
diagonalizable if and only if the geometric multiplicity of each eigenvalue equals its algebraic
multiplicity.

Proof. Let n = dim(V ). Let λ1, . . . , λk be the distinct eigenvalues of T with respective algebraic
multiplicities mi. Let di = dim(Eλi

(T )) be the corresponding geometric multiplicities.
(⇒) Assume that T is diagonalizable. Let B be a basis for V made up of eigenvectors of T . For

each 1 ≤ i ≤ k, define Bi := B ∩ Eλi
(T ). Denote by ni the number of vectors in Bi. Then ni ≤ di

by Proposition 10.16 and di ≤ mi by Proposition 17.6. Since B has n vectors and the Eλi
(T ) has

trivial intersection with the sum of the other eigenspaces,
∑k

i=1 ni = n. The sum of the algebraic

multiplicities is the degree of the characteristic polynomial so
∑k

i=1 mi = n as well. We have

n =
k∑

i=1

ni ≤
k∑

i=1

di ≤
k∑

i=1

mi = n.

It follows that
∑k

i=1(mi − di) = 0 and di = mi for each 1 ≤ i ≤ k since 0 ≤ mi − di.
(⇐) Assume that di = mi for each 1 ≤ i ≤ k. For each 1 ≤ i ≤ k, let Bi be an ordered basis

for Eλi
(T ) and B := B1 ∪ · · · ∪ Bk. By a similar argument to that of Theorem 16.14, B is linearly

independent. Since di = mi for each 1 ≤ i ≤ k, B contains
∑k

i=1 di =
∑k

i=1 mi = n vectors.
Therefore, B is an ordered basis for V consisting of eigenvectors of T so T is diagonalizable. □

Example 17.8. We return to Example 16.15. Let T : C2 → C2 be defined by T (x, y) = (−y, x).
Pick B to be the standard basis. The characteristic polynomial is

cT (t) = det([T ]B − tI2)

= det

(
−t −1
1 −t

)
= t2 + 1.

Over C, we factor cT (t) = (t− i)(t+ i). The eigenvalues of T are ±i. At this point, we have found
two distinct eigenvectors in the two-dimensional vector space C2. Corollary 16.10.2 implies that
T is diagonalizable. However, we find the corresponding eigenvectors anyway.

Let λ = i. Then [T ]B − iI2 =

(
−i −1
1 −i

)
. We find Ei(T ) = ker([T ]B − iI) = Span{(i, 1)}.

Let λ = −i. Then [T ]B + iI2 =

(
i −1
1 i

)
. We find E−i(T ) = ker([T ]B + iI) = Span{(−i, 1)}.

End of lecture 22

Example 17.9. Let T : P2(C) → P2(C) be defined by T (p(x)) = p′(x). We want to figure out if
T is diagonalizable. Pick the standard basis B = (1, x, x2) for P2(C). We have

T (1) = 0 · 1 + 0 · x+ 0 · x2

T (x) = 1 · 1 + 0 · x+ 0 · x2

T (x2) = 0 · 1 + 2 · x+ 0 · x2

so

[T ]B =

0 1 0
0 0 2
0 0 0

 .
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Compute the characteristic polynomial by expanding the determinant along the first row as follows.

cT (t) = det([T ]B − tI3)

= det

−t 1 0
0 −t 2
0 0 −t


= (−1)1+1(−t) det

(
−t 2
0 −t

)
+ (−1)1+2 det

(
0 2
0 −t

)
= −t(t2)

= −t3

Thus the only eigenvalue of T is 0 with algebraic multiplicity 3. We want to find the geometric
multiplicity of the eigenvalue 0, which is equivalent to computing the dimension of the kernel of
[T ]B − 0I3 = [T ]B. The matrix

[T ]B =

0 1 0
0 0 2
0 0 0

→

0 1 0
0 0 1
0 0 0


is rank 2 so dim(ker(T )) = dim(P2(C)) − rank(T ) = 1 by Rank-Nullity Theorem. Since the
geometric multiplicity of the eigenvalue 0 does not equal its algebraic multiplicity, the operator T
is not diagonalizable.

18. Invariant subspaces and Cayley-Hamilton Theorem

We are skipping Section 18 in lecture. The material will not be tested.
If v ∈ V is an eigenvector of a linear operator T : V → V , then T sends v to an element of

Span({v}). As a result, the subspace Span({v}) of V is mapped into itself via T . We can generalize
this notion with the following definition.

Definition 18.1. Let V be a vector space and T : V → V a linear operator. A subspace W of V
is a T -invariant subspace of V if T (W ) ⊂ W . In other words, for each w ∈ W , T (w) ∈ W .

Example 18.2. We have already encountered many examples of T -invariant subspaces.

(1) {0}
(2) V
(3) im(T )
(4) ker(T )
(5) Eλ for any eigenvalue λ of T

Example 18.3. Let T : R3 → R3 be the operator defined as T (x, y, z) = (x + y, y + z, 0). Let
W be the xy-plane. For any (x, y, 0) ∈ W , we have T (x, y, 0) = (x + y, y, 0) ∈ W . Thus W is
T -invariant. Let X be the x-axis. Then for (x, 0, 0) ∈ R3, we have T (x, 0, 0) = (x, 0, 0) ∈ X so X
is T -invariant as well. In fact, the vectors on the x-axis are eigenvectors of T corresponding to the
eigenvalue 1.

When we identify a T -invariant subspace W of a vector space V . We can restrict the linear
operator T to a linear operator on W . We denote TW : W → W the function TW (w) = T (w) for
all w ∈ W . Since T is a linear transformation, we can show that TW is a linear transformation.
As the following result illustrates, there are some properties of T that TW inherits.
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Proposition 18.4. Let V be a finite dimensional vector space with linear operator T : V → V .
Let W be a T -invariant subspace of V . Then the characteristic polynomial of TW divides the
characteristic polynomial of T .

Proof. Choose a basis B′ = (v1, . . . , vk) for W and extend it to a basis B = (v1, . . . , vk, vk+1, . . . , vn)
for V via Proposition 10.13. Let vi ∈ B′. Since W is T -invariant, T (vi) = TW (vi) ∈ Span(B′) so

[T ]B =

(
[TW ]B′ A

0 B

)
Let f(t) be the characteristic polynomial of T and g(t) the characteristic polynomial of TW . Then

f(t) = det([T ]B − tIn) = det

(
[TW ]B′ − tIk A

0 B − tIn−k

)
= g(t) det(B − tIn−k).

□

The following example is a common type of invariant subspace.

Example 18.5. Let V be a vector space and T : V → V a linear operator. Let v ∈ V . Then
W := Span({v, T (v), T 2(v), . . . }) is a T -invariant subspace of V . In fact, W is the smallest T
invariant subspace containing v. We call W the T-cyclic subspace of V generated by v.

Example 18.6. Let T : P2(R) → P2(R) be the linear operator defined by T (p(x)) = p′(x). The
T -cyclic subspace of P2(R) generated by x2 is Span({x2, 2x, 2}) = P2(R). We conclude that there
is no proper T -invariant subspace of P2(R) that contains x2.

As the next result proves, there is an easy way to produce a basis for and the characteristic
polynomial corresponding to a cyclic subspace.

Proposition 18.7. Let V be a finite dimensional vector space with linear operator T : V → V .
Let W be a T -cyclic subspace of V generated by a non-zero vector v ∈ V . Let k = dim(W ).

(i) {v, T (v), T 2(v), . . . , T k−1(v)} is a basis for W .
(ii) If a0v + a1T (v) + · · ·+ ak−1T

k−1(v) + T k(v) = 0, then the characteristic polynomial of TW

is f(t) = (−1)k(a0 + a1t+ · · ·+ ak−1t
k−1 + tk).

Proof.

(i) Since v ̸= 0, {v} is linearly independent by Example 9.6. Let j be the largest positive integer
for which B = {v, T (v), . . . , T j−1(v)} is linearly independent. Such a j must exist since V is
finite dimensional. Equivalently, B∪{T j(v)} is linearly dependent. Proposition 9.9 implies
that T j(v) is a linear combination of the elements of B. Let Z = Span(B) so B is a basis
for Z. We will show that Z is T -invariant. Let z ∈ Z. Then z = b0v + · · · + bj−1T

j−1(v)
and, by linearity of T ,

T (z) = T (b0v + · · ·+ bj−1T
j−1(v)) = b0T (v) + · · ·+ bj−1T

j(v).

By above, T j(v) is a linear combination of the elements of B so T (z) is a linear combination
of elements of B. Thus T (z) ∈ Z, and Z is T -invariant. Since W is the smallest T -invariant
subspace that contains v, W ⊂ Z. Clearly, Z ⊂ W so W = Z. It follows that B is a basis
for W and j = dim(W ) = k.

(ii) View B from (i) as an ordered basis for W . Let a0, . . . , ak−1 be scalars such that

a0v + a1T (v) + · · ·+ ak−1T
k−1(v) + T k(v) = 0.

Rearrange to obtain

T k(v) = −a0 − a1T (v)− · · · − ak−1T
k−1(v).
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Then

[TW ]B =


0 0 . . . 0 −a0
1 0 . . . 0 −a1
...

...
...

...
0 0 . . . 1 −ak−1

 .

A computation reveals that the characteristic polynomial is

f(t) = (−1)k(a0 + a1t+ · · ·+ ak−1t
k−1 + tk).

□

Cayley-Hamilton Theorem is an important result that links the algebra of characteristic poly-
nomials with the geometry of linear operators. Although we won’t see applications of the result in
this class, we will run into Cayley-Hamilton many times in the course of our mathematical journey.

Theorem 18.8 (Cayley-Hamilton Theorem). Let V be a finite dimensional vector space with
linear operator T : V → V . Let f(t) be the characteristic polynomial of T . Then f(T ) is the zero
transformation. In other words, T “satisfies” its characteristic polynomial.

Proof. We will show that f(T )(v) = 0 for all v ∈ V . Since the claim is clear when v = 0, we may
assume that v ̸= 0. Let W be the T -cyclic subspace generated by v. Suppose dim(W ) = k. By
Proposition 18.7(i), there are scalars a0, . . . , ak−1 for which

a0v + a1T (v) + · · ·+ ak−1T
k−1(v) + T k(v) = 0.

Thus Proposition 18.7(ii) implies that

g(t) = (−1)k(a0 + a1t+ · · ·+ ak−1t
k−1 + tk)

is the characteristic polynomial of TW . As a result, g(T )(v) = 0. By Proposition 18.4, g(t) divides
f(t) so f(T )(v) = 0. □

Example 18.9. Let T : R2 → R2 be the linear operator defined by

T (x, y) = (x+ 2y,−2x+ y).

Choose the standard basis B = (e1, e2). In order to find a matrix representation of the transfor-
mation, apply T to the input basis elements and write the result in terms of the output basis.

T (e1) = (1,−2) = e1 − 2e2

T (e2) = (2, 1) = 2e1 + e2

Then

[T ]B =

(
1 2
−2 1

)
.

The characteristic polynomial of T is

det([T ]B − tI2) = det

(
1− t 2
−2 1− t

)
= (1− t)(1− t) + 4

= t2 − 2t+ 5.
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Cayley-Hamilton Theorem implies that T 2 − 2T + 5I is the zero transformation. We can verify
the claim on the matrix representation of T as follows.

[T ]2B − 2[T ]B + 5I2 =

(
1 2
−2 1

)(
1 2
−2 1

)
− 2

(
1 2
−2 1

)
+ 5

(
1 0
0 1

)
=

(
−3 4
−4 −3

)
+

(
−2 −4
4 −2

)
+

(
5 0
0 5

)
=

(
0 0
0 0

)
19. Inner products

In an abstract vector space, there is no inherent notion of angle, length, or distance. We might
think there is in Rn, but that comes from our previous bias about Euclidean space. We want to
introduce geometry into vector spaces so we define the inner product.

For now, we will consider vector spaces over either R or C. We briefly recall some notions about
complex numbers. The conjugate of a+ bi ∈ C is

a+ bi := a− bi ∈ C

and the modulus of a complex number a+ bi ∈ C is

|a+ bi| :=
√
a2 + b2.

Note that if λ ∈ R is a real number, we have λ = λ. We can prove that if z, w ∈ C, then

zw = z w

zz = |z|2.

Definition 19.1. Let V be a (real or complex) vector space. An inner product is a function
⟨·, ·⟩ : V × V → F satisfying the following properties.

(1) ⟨v + v′, w⟩ = ⟨v, w⟩+ ⟨v′, w⟩
(2) ⟨λv, w⟩ = λ⟨v, w⟩ for all v, v′, w ∈ V and λ ∈ F
(3) ⟨v, w⟩ = ⟨w, v⟩ for all v, w ∈ V
(4) If v ∈ V is non-zero, then ⟨v, v⟩ > 0

Example 19.2. Take the vector space Cn. We can define an inner product as follows. Let
v = (v1, . . . , vn) and w = (w1, . . . , wn) for vi, wj ∈ C. Then ⟨v, w⟩ :=

∑n
i=1 viwi. We refer to this

inner product as the standard inner product on Cn.
For the real vector space Rn, the standard inner product is ⟨v, w⟩ :=

∑n
i=1 viwi since the complex

conjugate does not affect real numbers. In multivariable calculus, we call this inner product the
dot product.

Example 19.3. We can build a non-standard inner product on R2 as follows.〈(
x1

y1

)
,

(
x2

y2

)〉
2

:=
(
x2 y2

)(2 1
1 2

)(
x1

y1

)
=
(
x2 y2

)(2x1 + y1
x1 + 2y1

)
= 2x1x2 + x2y1 + x1y2 + 2y1y2

Check that the properties of Definition 19.1 are satisfied.
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Example 19.4. The vector space P (R) can be endowed with an inner product

⟨p, q⟩ =
∫ 1

−1

p(t)q(t)dt.

Check that the properties of Definition 19.1 are satisfied.

Example 19.5. Take the vector space C([0, 1]) of continuous C-valued continuous functions on
[0, 1]. Until we define an inner product, there is no notion of angle or distance between complex-

valued continuous functions. For f, g ∈ C([0, 1]), define ⟨f, g⟩ :=
∫ 1

0
f(t)g(t)dt. Check that the

properties of Definition 19.1 are satisfied.

Definition 19.6. An inner product space is a vector space with a choice of inner product.

Proposition 19.7. Let V be an inner product space. Then

(i) ⟨v, w + w′⟩ = ⟨v, w⟩+ ⟨v, w′⟩
(ii) ⟨v, λw⟩ = λ⟨v, w⟩
(iii) ⟨v, 0⟩ = ⟨0, v⟩ = 0
(iv) ⟨v, v⟩ = 0 if and only if v = 0.

Proof.

(i) Definition 19.1 (1) and (3) imply

⟨v, w + w′⟩ = ⟨w + w′, v⟩

= ⟨w, v⟩+ ⟨w′, v⟩

= ⟨w, v⟩+ ⟨w′, v⟩
= ⟨v, w⟩+ ⟨v, w′⟩.

(ii) Definition 19.1 (2) and (3) imply

⟨v, λw⟩ = ⟨λw, v⟩

= λ⟨w, v⟩

= λ ⟨w, v⟩
= λ⟨v, w⟩.

(iii) By (ii),

2⟨v, 0⟩ = ⟨v, 2 · 0⟩
= ⟨v, 0⟩.

Over R or C, ⟨v, 0⟩ = 0. Apply Definition 19.1(3) to obtain the result for ⟨0, v⟩.
(iv) (⇒) Assume that ⟨v, v⟩ = 0. The contrapositive of Definition 19.1(4) proves the result.

(⇐) Assume that v = 0. Then ⟨v, v⟩ = 0 by (iii).

□

End of lecture 23

Remark 19.8. We say that an inner product is conjugate linear in the second component. When
F = R, Definition 19.1 and Proposition 19.7 imply that an inner product is bilinear.

We can use an inner product to check equality of two vectors.

Corollary 19.8.1. If ⟨u, v⟩ = ⟨u,w⟩ for all u ∈ V , then v = w.
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Proof. We can rewrite the equation as ⟨u, v − w⟩ = 0 for all u ∈ V . Pick u = v − w. Proposition
19.7(iv) implies that v − w = 0 or v = w. □

Now we can introduce the first notions of geometry into an inner product space. Again, none of
these notions exist a priori — they are defined using an inner product.

Definition 19.9. Let V be an inner product space. The length or norm or magnitude of a
vector v ∈ V is ||v|| :=

√
⟨v, v⟩. A unit vector is a vector such that ||v|| = 1.

Here we state some basic properties of the norm associated to an inner product. These should
be familiar from multivariable calculus.

Proposition 19.10. Let V be an inner product space with v ∈ V and λ ∈ C.
(i) ||λv|| = |λ| · ||v|| where |λ| is the magnitude of a complex number
(ii) v = 0 if and only if ||v|| = 0

Proof.

(i) We can write ||λv|| =
√
⟨λv, λv⟩ =

√
λ⟨v, λv⟩ =

√
λλ⟨v, v⟩ =

√
|λ|2⟨v, v⟩ = |λ| · ||v||.

(ii) The statement is equivalent to Proposition 19.7(iv).

□

Definition 19.11. Let V be an inner product space. Two vectors v, w ∈ V are orthogonal,
sometimes written v⊥w, if ⟨v, w⟩ = 0.

Example 19.12. Recall the inner product from Example 19.3. We can compute〈(
1
0

)
,

(
1
−2

)〉
2

=
(
1 −2

)(2 1
1 2

)(
1
0

)
= 2 + 0− 2 + 0

= 0.

Thus

(
1
0

)
and

(
1
−2

)
are orthogonal with respect to this non-standard inner product. With

respect to the standard inner product, the dot product, these vectors are not orthogonal. The
geometry of R2 changes completely when we choose a different inner product.

Example 19.13. Let V = R([0, 1]) be the continuous R-valued functions on [0, 1]. Recall the inner
product from Example 19.5. The functions f(t) = sin(2πt) and g(t) = cos(2πt) are orthogonal
with respect to the inner product since

⟨f, g⟩ =
∫ 1

0

sin(2πt) cos(2πt)dt

=

∫ 1

0

1

2
sin(4πt)dt

=

[
− 1

8π
cos(4πt)

]1
0

= 0.

The next two definitions will help define an inner product on the vector space Mn×n(C).

Definition 19.14. The trace of a square matrix is the sum of the diagonal entries. For a matrix
A in Mn×n(C), we write tr(A) :=

∑n
i=1Aii.



62 MATTHEW GHERMAN

Definition 19.15. Let A ∈ Mm×n(C). The conjugate transpose or adjoint of A is the n×m
matrix A∗ such that (A∗)ij = Aji for all 1 ≤ i ≤ m and 1 ≤ j ≤ n.

Example 19.16. We can define an inner product on the vector space Mm×n(C) as follows. For
A,B ∈ Mm×n(C), we have

⟨A,B⟩ := tr(B∗A).

The inner product is known as the Frobenius inner product.

The matrices A =

(
1 i
0 −1

)
and

(
−i 0
1 −i

)
are orthogonal with respect to the Frobenius inner

product since

⟨A,B⟩ = tr(B∗A)

= tr

((
i 1
0 i

)(
1 i
0 −1

))
= tr

(
i −2
0 −i

)
= i− i

= 0.

End of lecture 24

20. Cauchy-Schwarz inequality and angles

We are skipping Section 20 in lecture. The material will not be tested.
In the inner product space Rn endowed with the dot product, we have angles and famous

inequalities with inner products and magnitudes. We will derive analogous statements for some
general inner product spaces. The next theorem is one of the most important inequalities in all of
math! There are deep interpretations of the result in physics as well.

Theorem 20.1 (Cauchy-Schwarz inequality). Let V be an inner product space. Then for all
v, w ∈ V ,

|⟨v, w⟩| ≤ ||v||||w||.
Furthermore, equality holds if and only if v and w are parallel.

Proof. Assume that F = R. The proof in the complex case is essentially identical, with some
annoying technical differences.

Fix v, w ∈ V . The result is immediate if either v or w is 0 so assume v and w are non-zero.
Define a function f : R → R as follows. For t ∈ R,

f(t) := ⟨v + tw, v + tw⟩.

Note that f(t) = ||v + tw|| ≥ 0. On the other hand, note that

f(t) = ⟨v + tw, v + tw⟩
= ⟨v, v⟩+ ⟨tw, v⟩+ ⟨v, tw⟩+ ⟨tw, tw⟩
= ||v||2 + 2⟨v, w⟩t+ ||w||2t2.

We are viewing f(t) as a quadratic polynomial expression

f(t) =
(
||w||2

)
t2 + (2⟨v, w⟩) t+ ||v||2.
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If the discriminant of f(t) is positive, there would be two distinct real roots of f(t). In that case,
f(t) would have to be negative for some values of t, contradicting the construction f(t) ≥ 0. Thus

(2⟨v, w⟩)2 − 4
(
||w||2

)
||v||2 ≤ 0.

Rearranging the inequality gives
|⟨v, w⟩| ≤ ||v||||w||.

We will now prove ⟨v, w⟩ = ||v||||w|| if and only if v and w are parallel. (⇒) Assume that
|⟨v, w⟩| = ||v||||w||. Follow the argument above with the substitution |⟨v, w⟩| = ||v||||w|| to obtain
f(t) = (||w||t + ||v||)2. If ||w|| = 0, then w = 0 by Proposition 19.10 so v and w are parallel.

Assume ||w|| ≠ 0. The repeated root of f(t) is − ||v||
||w|| . In other words,

f

(
− ||v||
||w||

)
=

〈
v − ||v||

||w||
w, v − ||v||

||w||
w

〉
= 0.

By Proposition 19.7(iv), u− ||v||
||w||w = 0 or u = ||v||

||w||w.

(⇐) Assume that v and w are parallel. Then w = cv for some c ∈ F . We have

|⟨v, w⟩| = |⟨v, cv⟩| = |c⟨v, v⟩| = |c| · ||v||2 = ||v||||w||
since ||w|| = ||cv|| = |c| · ||v||. □

The triangle inequality, one of the most important results in analysis, follows easily from Cauchy-
Schwarz inequality.

Corollary 20.1.1 (Triangle inequality). Let V be an inner product space with v, w ∈ V . Then

||v + w|| ≤ ||v||+ ||w||.

Proof. Again, we prove the triangle inequality in the real case. The complex version is similar with
technical differences.

Fix v, w ∈ V . Note that

||v + w||2 = ⟨v + w, v + w⟩
= ⟨v, v⟩+ ⟨v, w⟩+ ⟨w, v⟩+ ⟨w,w⟩
= ||v||2 + 2⟨v, w⟩+ ||w||2.

By the Cauchy-Schwarz inequality, ⟨v, w⟩ ≤ ||v||||w||. Thus,
||v + w||2 ≤ ||v||2 + 2||v||||w||+ ||w||2

= (||v||+ ||w||)2 .
Taking square roots of both sides gives

||v + w|| ≤ ||v||+ ||w||.
□

Now, we can discuss the notion of angle in an abstract inner product space. The notion of angle
and orthogonality is defined via the inner product. It wasn’t already there. Note that when we
define angle, we have to specialize to an inner product space over the real numbers.

Definition 20.2. Let v, w ∈ V be vectors in a real inner product space. The angle between v
and w is

θv,w := arccos

(
⟨v, w⟩

||v||||w||

)
.

Note that the domain of arccos x is [−1, 1] so θv,w is well-defined because of Cauchy-Schwarz!
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Proposition 20.3. For v, w ∈ V in an inner product space, ⟨v, w⟩ = ||v||||w|| cos(θv,w). The
formulas surrounding angles are reminiscent of those used in Math 33A.

Remark 20.4. We aren’t typically interested in angles. We recommend avoiding the use of angles
in proofs. It’s solely interesting that we can define the notion of angle in more generality!

21. Orthonormal bases and orthogonal complements

Suppose that V is a finite dimensional inner product space. We can look for a particularly useful
kind of basis called an orthonormal basis.

Definition 21.1. Let V be an inner product space. A set of vectors S ⊂ V is orthonormal if
||v|| = 1 for each v ∈ S and ⟨v, w⟩ = 0 for v, w ∈ S and v ̸= w. An orthonormal basis is an
ordered basis of V that is orthonormal.

Example 21.2. Consider R2 with the standard inner product (the dot product). Then the stan-
dard basis is an example of an orthonormal bases.((

1
0

)
,

(
0
1

))
If we want to find the standard coordinates of a vector e1 + 2e2, we can write

e1 + 2e2 = ⟨e1 + 2e2, e1⟩e1 + ⟨e1 + 2e2, e2⟩.
The following is not an orthonormal basis even though v1 and v2 are orthogonal.(

v1 =

(
1
1

)
, v2 =

(
1
−1

))
The same technique to write e1 + 2e2 as a linear combination of v1 and v2 will not work since

e1 + 2e2 ̸= ⟨e1 + 2e2, v1⟩v1 + ⟨e1 + 2e2, v2⟩v2 = 3

(
1
1

)
−
(

1
−1

)
=

(
2
4

)
.

Divide each of v1 by its magnitude and divide v2 by its magnitude to obtain the following or-
thonormal basis for R2 with respect to the dot product.(( 1√

2
1√
2

)
,

( 1√
2

− 1√
2

))
The original technique we used with the standard basis will once again work for the new orthonor-
mal basis since

e1 + 2e2 = ⟨e1 + 2e2, u1⟩u1 + ⟨e1 + 2e2, u2⟩u2 =
3√
2

(
1√
2

(
1
1

))
− 1√

2

(
1√
2

(
1
−1

))
=

(
1
2

)
.

The following result describes a method of constructing an orthonormal basis from any basis.
Further, in order to find the coefficients of a linear combination of an orthonormal basis, we need
only compute inner products of elements. Before, we had to solve a system of linear equations.

Theorem 21.3. Let V be a finite dimensional inner product space.

(i) There is an orthonormal basis of V .
(ii) If (u1, . . . , un) is an orthonormal basis of V , then for all v ∈ V ,

v =
n∑

j=1

⟨v, uj⟩uj.

Proof.
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(i) Pick a basis (v1, . . . , vn) for V . We build an orthonormal basis B := (u1, . . . , un) recursively.
Let u1 =

1
||v1||v1. Given {u1, . . . , uk}, define

wk+1 := vk+1 −
k∑

i=1

⟨vk+1, ui⟩ui

uk+1 :=
1

||wk+1||
wk+1.

Let v1 = w1 for ease of notation. We want to prove that B is orthonormal inductively.
Each vector in B is a unit vector via

⟨ui, ui⟩ =
〈

1

||wi||
wi,

1

||wi||
wi

〉
=

1

||wi||||wi||
⟨wi, wi⟩ =

||wi||2

||wi||2
= 1.

As a result, {u1} is orthonormal, and the base case holds. Assume that {u1, . . . , uk} is
orthonormal. We want to show that {u1, . . . , uk+1} is orthonormal. By the inductive
hypothesis,

⟨uk+1, uj⟩ =
〈

1

||wk+1||
wk+1, uj

〉
=

1

||wk+1||
⟨wk+1, uj⟩

=
1

||wk+1||

〈
vk+1 −

k∑
i=1

⟨vk+1, ui⟩ui, uj

〉

=
1

||wk+1||

(
⟨vk+1, uj⟩ −

k∑
i=1

⟨vk+1, ui⟩⟨ui, uj⟩

)
=

1

||wk+1||
(⟨vk+1, uj⟩ − ⟨vk+1, uj⟩⟨uj, uj⟩)

=
1

||wk+1||
(⟨vk+1, uj⟩ − ⟨vk+1, uj⟩)

= 0.

Thus uk+1 is orthogonal to each uj for 1 ≤ j ≤ k, and B is orthonormal.
We need to show that B is a basis of V . By construction,

vj = wj +

j−1∑
i=1

⟨vj, ui⟩ui = ||wj||uj +

j−1∑
i=1

⟨vj, ui⟩ui.

Thus vj ∈ Span(B) for each 1 ≤ j ≤ n. By Corollary 8.6.1,

V = Span({v1, . . . , vn}) ⊂ Span(B) ⊂ V

so B spans V . There are n vectors in B so B is a basis by Proposition 10.13(i).
(ii) Let v ∈ V . Since (u1, . . . , un) is a basis, we can write

v =
n∑

j=1

ajuj
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for some constants aj ∈ F . Since {u1, . . . , un} is orthonormal,

⟨v, ui⟩ =

〈
n∑

j=1

ajuj, ui

〉

=
n∑

j=1

⟨ajuj, ui⟩

=
n∑

j=1

aj⟨uj, ui⟩

= ai⟨ui, ui⟩
= ai.

Therefore, v =
∑n

i=1⟨v, ui⟩ui.

□

Remark 21.4. The proof of Theorem 21.3(i) is the Gram-Schmidt orthonormalization process.
Given any linearly independent set of a vector space, the Gram-Schmidt process will output an
orthonormal set. We usually use Gram-Schmidt on a basis for the vector space in which case the
process outputs an orthonormal basis for the vector space.

Definition 21.5. Let S be an orthonormal subset of an inner product space V . Let v ∈ V . Then
the Fourier coefficients of v relative to S are the scalars ⟨v, ui⟩ for ui ∈ S.

Example 21.6. Let R4 be endowed with the standard inner product, the dot product. Let W
be the subspace of R4 with basis ((1, 0, 1, 0), (1, 1, 1, 1), (0, 1, 2, 1)). We will apply Gram-Schmidt
process to find an orthonormal basis for W . Denote

v1 = (1, 0, 1, 0)

v2 = (1, 1, 1, 1)

v3 = (0, 1, 2, 1).

Then ||v1||2 = ⟨v1, v1⟩ = 2. We have u1 =
1

||v1||v1 =
1√
2
(1, 0, 1, 0). Next,

w2 = v2 − ⟨v2, u1⟩u1

= (0, 1, 0, 1)

with ||w2||2 = ⟨w2, w2⟩ = 2. Thus u2 =
1

||w2||w2 =
1√
2
(0, 1, 0, 1). Finally,

w3 = v3 − ⟨v3, u1⟩u1 − ⟨v3, u2⟩u2

= (−1, 0, 1, 0)

with ||w3||2 = ⟨w3, w3⟩ = 2. Therefore, u3 =
1

||w3||w3 =
1√
2
(−1, 0, 1, 0). The ordered basis(

1√
2
(1, 0, 1, 0),

1√
2
(0, 1, 0, 1),

1√
2
(−1, 0, 1, 0)

)
is an orthonormal basis for W .
We can find the orthogonal projection of any vector v ∈ V onto W as follows.

projW (v) = ⟨v, u1⟩u1 + ⟨v, u2⟩u2 + ⟨v, u3⟩u3

The vector projW (v) is the vector closest to v that lies in the subspace W where distance is
determined by the inner product.
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End of lecture 25

Example 21.7. Take the vector space P2(R) with inner product

⟨p, q⟩ =
∫ 1

−1

p(t)q(t)dt

for p, q ∈ P2(R) as in Example 19.4. Let B = (1, x, x2) be the standard basis for P2(R). We will
find a corresponding orthonormal basis using Gram-Schmidt.

We have v1 = 1 so ||v1||2 = ⟨v1, v1⟩ =
∫ 1

−1
dt = 2. Then u1 =

1√
2
.

We have v2 = x so

w2 = v2 − ⟨v2, u1⟩u1

= x− 1√
2

(∫ 1

−1

1√
2
tdt

)
= x− 1

2

[
1

2
t2
]1
−1

= x.

Find the norm of w2,

||w2||2 = ⟨w2, w2⟩

=

∫ 1

−1

t2dt

=

[
1

3
t3
]1
−1

=
2

3

We can then make w2 a unit vector via

u2 =
1

||w2||
w2

=

√
3

2
x.

Finally, v3 = x2 so

w3 = v3 − ⟨v3, u1⟩u1 − ⟨v3, u2⟩u2

= x2 − 1

2

∫ 1

−1

t2dt− 3

2
x

∫ 1

−1

t3dt

= x2 − 1

2

[
1

3
t3
]1
−1

− 3

2
x

[
1

4
t4
]1
−1

= x2 − 1

3
.
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Find the norm of w3,

||w3|| = ⟨w3, w3⟩

=

∫ 1

−1

(
t2 − 1

3

)2

dt

=

∫ 1

−1

(
t4 − 2

3
t2 +

1

9

)
=

2

5
− 4

9
+

2

9

=
8

45
.

We can then make w3 a unit vector via

u3 =
1

||w3||
w3

=

√
5

8
(3x2 − 1).

An orthonormal basis for P2(R) with respect to the given inner product is (u1, u2, u3).

End of lecture 26
End of final material

Definition 21.8. Let W ⊂ V be a subspace of an inner product space. The orthogonal com-
plement of W is the set

W⊥ := {v ∈ V : ⟨v, w⟩ = 0 for all w ∈ W}.
Proposition 21.9. Let W ⊂ V be a subspace of an inner product space V . Then W⊥ is a
subspace of V .
Proof.

(1) By Proposition 19.7(iii), ⟨0, w⟩ = 0 for all w ∈ W so 0 ∈ W⊥.
(2) Let u, v ∈ W⊥. Then ⟨u+v, w⟩ = ⟨u,w⟩+ ⟨v, w⟩ = 0+0 = 0 for all w ∈ W so u+v ∈ W⊥.
(3) Let v ∈ W⊥ and c ∈ F . Then ⟨cv, w⟩ = c⟨v, w⟩ = 0 for all w ∈ W so cv ∈ W⊥.

□

The next result proves that it is sufficient to check elements of the orthogonal complement on a
spanning set.

Lemma 21.10. Let W ⊂ V be a subspace of an inner product space. If v ∈ V is orthogonal to
each element of a spanning set S of W , then v ∈ W⊥.

Proof. Let w ∈ W . Then w =
∑k

i=1 aiwi for wi ∈ S and ai ∈ F . We have

⟨v, w⟩ =

〈
v,

k∑
i=1

aiwi

〉
=

k∑
i=1

ai⟨v, wi⟩ = 0.

Thus v ∈ W⊥. □

Example 21.11. In the vector space C3 under the standard inner product, take the subspaceW =
Span({e1, e2}). We want to find W⊥. Let v ∈ C3 be a vector such that ⟨v, e1⟩ = 0 and ⟨v, e2⟩ = 0.
By Lemma 21.10, this is sufficient to say that v ∈ W⊥. We can write v = a1e1 + a2e2 + a3e3. The
assumptions imply that a1 = a2 = 0. Therefore, W⊥ = Span({e3}). Using careless language, the
orthogonal complement to the xy-plane is the z-axis.
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Proposition 21.12. Let W ⊂ V be a subspace of a finite dimensional inner product space. Then

V = W ⊕W⊥.

Proof. Let B = (w1, . . . , wk) be an orthonormal basis for W , which exists by Theorem 21.3(i). Let

v ∈ V . Define an element of W as w :=
∑k

i=1⟨v, wi⟩wi. Since B is orthonormal,

⟨v − w,wj⟩ = ⟨v, wj⟩ − ⟨w,wj⟩

= ⟨v, wj⟩ −

〈
k∑

i=1

⟨v, wi⟩wi, wj

〉

= ⟨v, wj⟩ −
k∑

i=1

⟨v, wi⟩⟨wi, wj⟩

= ⟨v, wj⟩ − ⟨v, wj⟩
= 0.

Lemma 21.10 implies v−w is inW⊥ and v = w+(v−w) ∈ W+W⊥. In other words, V = W+W⊥.
Let v ∈ W ∩W⊥. Then ⟨v, v⟩ = 0 so v = 0 by Proposition 19.10. Thus W ∩W⊥ = {0}. □

Remark 21.13. In the proof of Proposition 21.12, the definition of w =
∑k

i=1⟨v, wi⟩wi is the
projection of v onto the subspace W . We can prove that w is the vector in W that minimizes
||v−w||. In other words, w is the vector closest to v that lies in W . The main takeaway from the
section is that orthonormal bases make finding linear combinations and projections onto subspaces
easy.

The projection technique works whenever we have an orthonormal basis for a subspace. However,
if we try to project onto a subspace without first finding an orthonormal basis, we might get a
completely wrong result as the next result illustrates.

Example 21.14. Find the projection of v = (1, 2,−1) onto the subspace W = Span({e1+e2, e2}).
Note that {e1+e2, e2} is a basis forW that is not orthonormal. We observe thatW = Span({e1, e2})
so we expect the projection of v onto W to be (1, 2, 0). However,

⟨v, e1 + e2⟩ = 1 + 2 = 3

⟨v, e2⟩ = 2

so, if we misuse the formula from the proof of Proposition 21.12, the projection of v onto W is
3(e1 + e2) + 2e2 = (3, 5, 0) ̸= (1, 2, 0). The simple projection formula requires first finding an
orthonormal basis for the subspace.

Corollary 21.14.1. Let W ⊂ V be a subspace of a finite dimensional inner product space. Then

dim(V ) = dim(W ) + dim(W⊥).

Proof. Apply Corollary 10.17.1 to the result of Proposition 21.12. □

22. Adjoints

For a matrix, we introduced the conjugate transpose in Definition 19.15. In the presence of an
inner product, we can often generalize this notion to adjoints of linear operators. However, an
adjoint to a linear operator does not always exist. We will prove that adjoints exist and are unique
in a finite dimensional vector space. Pairing an operator with an adjoint is a common technique
in algebra. Information about one can provide information about the other.



70 MATTHEW GHERMAN

Lemma 22.1. Let V be a finite dimensional inner product space over F with g : V → F linear.
Then there exists a unique w ∈ V such that g(v) = ⟨v, w⟩ for all v ∈ V .

Proof. Let B = (u1, . . . , un) be an orthonormal basis for V , which exists by Theorem 21.3(i). Let

w =
∑n

i=1 g(ui)ui. Define the linear function h : V → F by h(v) = ⟨v, w⟩. For 1 ≤ j ≤ n,

h(uj) =

〈
uj,

n∑
i=1

g(ui)ui

〉

=
n∑

i=1

g(ui)⟨uj, ui⟩

= g(vj).

Since g and h agree on B, linearity proves that g and h agree on any linear combination of B.
Every vector v ∈ V is an element of Span(B) so g = h.
In order to show that w is unique, suppose that g(v) = ⟨v, w′⟩ for all v ∈ V . Then ⟨v, w′⟩ = ⟨v, w⟩

for all v ∈ V so Corollary 19.8.1 implies w′ = w. □

Proposition 22.2. Let V be a finite dimensional inner product space with T ∈ L(V ). Then
there exists a unique function T ∗ : V → V such that ⟨T (v), w⟩ = ⟨v, T ∗(w)⟩ for all v, w ∈ V .
Furthermore, T ∗ is linear.

Proof. Let w ∈ V . Define g : V → F as g(v) = ⟨T (v), w⟩ for all v ∈ V . We first show that g is
linear. Let v1, v2 ∈ V and c ∈ F . Then

g(v1 + v2) = ⟨T (v1 + v2), w⟩
= ⟨T (v1) + T (v2), w⟩
= ⟨T (v1), w⟩+ ⟨T (v2), w⟩
= g(v1) + g(v2)

g(cv1) = ⟨T (cv1), w⟩
= ⟨cT (v1), w⟩
= c⟨T (v1), w⟩
= cg(v1).

Lemma 22.1 provides a unique w′ such that g(v) = ⟨v, w′⟩ for all v ∈ V . Define T ∗(w) = w′ so
⟨T (v), w⟩ = ⟨v, T ∗(w)⟩.

Next we prove linearity of T ∗. Let w,w′ ∈ V and c ∈ F . Then, for all v ∈ V ,

⟨v, T ∗(w + w′)⟩ = ⟨T (v), w + w′⟩
= ⟨T (v), w⟩+ ⟨T (v), w′⟩
= ⟨v, T ∗(w)⟩+ ⟨v, T ∗(w′)⟩
= ⟨v, T ∗(w) + T ∗(w′)⟩

⟨v, T ∗(cw)⟩ = ⟨T (v), cw⟩
= c⟨T (v), w⟩
= c⟨v, T (w)⟩
= ⟨v, cT (w)⟩.

Corollary 19.8.1 implies T ∗(w + w′) = T ∗(w) + T ∗(w′) and T ∗(cw) = cT ∗(w).
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We finally prove uniqueness. Assume that there is another map S : V → V such that

⟨T (v), w⟩ = ⟨v, S(w)⟩
for all v, w ∈ V . Then ⟨v, S(w)⟩ = ⟨v, T ∗(w)⟩ for all v, w ∈ V . By Corollary 19.8.1, S(w) = T ∗(w)
for all w ∈ V . Thus S = T ∗, and T ∗ is unique. □

Definition 22.3. Let V be an inner product space with T ∈ L(V ). The adjoint of T , when it
exists, is the unique, linear map T ∗ : V → V such that

⟨T (v), w⟩ = ⟨v, T ∗(w)⟩
for all v, w ∈ V .

Remark 22.4. Adjoints do not always exist for operators on infinite dimensional vector spaces.
When an adjoint does exist the proof of Proposition 22.2 shows that it is unique and linear.

Whenever we state a proposition or problem involving an adjoint, we will assume implicitly that
we are working with a transformation T for which the adjoint exists.

Example 22.5. Take the inner product space R2 with the dot product. Let T : R2 → R2 be

T

(
x
y

)
=

(
0 3
1 −1

)(
x
y

)
=

(
3y

x− y

)
.

We claim that the adjoint T ∗ : R2 → R2 is defined by

T ∗
(
x
y

)
=

(
0 1
3 −1

)(
x
y

)
=

(
y

3x− y

)
.

Let

(
x1

y1

)
,

(
x2

y2

)
∈ R2. Then〈
T

(
x1

y1

)
,

(
x2

y2

)〉
=

〈(
3y1

x1 − y1

)
,

(
x2

y2

)〉
= 3x2y1 + x1y2 − y1y2〈(

x1

y1

)
, T ∗

(
x2

y2

)〉
=

〈(
x1

y1

)
,

(
y2

3x2 − y2

)〉
= x1y2 + 3x2y1 − y1y2.

Since the two dot products coincide for any choice of vectors in R2, we have defined T ∗ correctly.

Example 22.6. Let C2 be an inner product space with the standard inner product. Define
T : C2 → C2 as

T

(
x
y

)
=

(
2i 3
1 −1

)(
x
y

)
=

(
2ix+ 3y
x− y

)
.

We claim that the adjoint T ∗ : R2 → R2 is defined by

T ∗
(
x
y

)
=

(
−2i 1
3 −1

)(
x
y

)
=

(
−2ix+ y
3x− y

)
.

Let

(
x1

y1

)
,

(
x2

y2

)
∈ C2. Then〈

T

(
x1

y1

)
,

(
x2

y2

)〉
=

〈(
2ix1 + 3y1
x1 − y1

)
,

(
x2

y2

)〉
= 2ix1x2 + 3x2y1 + x1y2 − y1y2〈(

x1

y1

)
, T ∗

(
x2

y2

)〉
=

〈(
x1

y1

)
,

(
−2ix2 + y2
3x2 − y2

)〉
= x1(−2ix2) + x1y2 + 3x2y1 − y1y2

= 2ix1x2 + x1y2 + 3x2y1 − y1y2.

Since the two inner products coincide for any choice of vectors in C2, we have defined T ∗ correctly.
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Examples 22.5 and 22.6 capture the motivation for the adjoint. The adjoint is an abstraction
of the conjugate-transpose operation (which for real vector spaces is the transpose operation).
Proposition 22.8 makes this precise and explains why the conjugate transpose of Definition 19.15
is often called the matrix adjoint. First, however, we need some useful properties of the adjoint

Proposition 22.7. Let V be an inner product space with linear operators S : V → V and
T : V → V for which adjoints exist.

(i) S + T has an adjoint, and (S + T )∗ = S∗ + T ∗.
(ii) cT has an adjoint, and (cT )∗ = cT ∗ for any c ∈ F .
(iii) S ◦ T has an adjoint, and (S ◦ T )∗ = T ∗ ◦ S∗.
(iv) T ∗ has an adjoint, and (T ∗)∗ = T .
(v) The identity operator is its own adjoint.

Proof. Let v, w ∈ V and c ∈ F .

(i)

⟨(S + T )(v), w⟩ = ⟨S(v) + T (v), w⟩ = ⟨S(v), w⟩+ ⟨T (v), w⟩ = ⟨v, S∗(w)⟩+ ⟨v, T ∗(w)⟩
= ⟨v, S∗(w) + T ∗(w)⟩ = ⟨v, (S∗ + T ∗)(w)⟩

(ii)
⟨(cT )(v), w⟩ = ⟨cT (v), w⟩ = c⟨T (v), w⟩ = c⟨v, T ∗(w)⟩ = ⟨v, cT ∗(w)⟩

(iii)

⟨(S ◦ T )(v), w⟩ = ⟨S(T (v)), w⟩ = ⟨T (v), S∗(w)⟩ = ⟨v, T ∗(S∗(w))⟩ = ⟨v, (T ∗ ◦ S∗)(w)⟩
(iv)

⟨T ∗(v), w⟩ = ⟨w, T ∗(v)⟩ = ⟨T (w), v⟩ = ⟨v, T (w)⟩
(v) Let I : V → V be the identity operator.

⟨I(v), w⟩ = ⟨v, w⟩ = ⟨v, I(w)⟩
□

Proposition 22.8. Let V be a finite dimensional inner product space with T ∈ L(V ). Let
B = (u1, . . . , un) be an orthonormal basis of V . Then

[T ∗]B = [T ]∗B.

Proof. Let A = [T ]B and B = [T ∗]B. Since B is orthonormal, Theorem 21.3(ii) shows

T ∗(uj) = ⟨T ∗(uj), u1⟩u1 + · · ·+ ⟨T ∗(uj), un⟩un.

Thus Bij = ⟨T ∗(uj), ui⟩ and Aij = ⟨T (uj), ui⟩. Note that by Proposition 22.7(iv),

Aji = ⟨T (ui), uj⟩ = ⟨uj, T (ui)⟩ = ⟨T ∗(uj), ui⟩ = Bij.

Since Aji = Bij it follows that B = ĀT . □

Example 22.9. Recall from Example 15.6 the vector space R∞ of sequences of real numbers with
finitely many non-zero entries. Since only finitely many terms in each sequence are non-zero, an
inner product ⟨·, ·⟩ : V × V → F can be defined like the usual dot product. Recall the right shift
operator S : R∞ → R∞ that satisfies

S(a0, a1, a2, . . . ) = (0, a0, a1, . . . ).

Define the “left-shift” operator T : R∞ → R∞ as

T (a0, a1, a2, . . . ) = (a1, a2, a3, . . . ).
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Let (a0, a1, a2, . . . ), (b0, b1, b2, . . . ) ∈ R∞ be two suitable sequences. Then

⟨S(a0, a1, a2, . . . ), (b0, b1, b2, . . . )⟩ =
∞∑
i=0

aibi+1

⟨(a0, a1, a2, . . . ), T (b0, b1, b2, . . . )⟩ =
∞∑
i=0

aibi+1.

Therefore, T = S∗.

23. Normal operators, self-adjoint operators, and the Spectral Theorem

Lemma 23.1. Let T : V → V be a linear operator on a finite dimensional inner product space
V . If T has an eigenvector, then so does T ∗.

Proof. Suppose that v is an eigenvector of T with corresponding eigenvalue λ. Then for any w ∈ V ,

0 = ⟨0, w⟩ = ⟨(T − λI)(v), w⟩ = ⟨v, (T − λI)∗(w)⟩ = ⟨v, (T ∗ − λI)(w)⟩.
Thus v is orthogonal to the image of T ∗ − λI so T ∗ − λI is not surjective. By Proposition 16.7,
T ∗ has eigenvalue λ. □

Theorem 23.2 (Schur’s Theorem). Let T be a linear operator on a finite dimensional inner
product space V . Suppose that the characteristic polynomial of T factors into linear polynomials.
Then there exists an orthonormal basis D for V such that the matrix [T ]D is upper triangular.

Proof. We will first find an ordered basis C for which [T ]C is upper triangular. Since the char-
acteristic polynomial of T factors into linear polynomials, T always has at least one eigenvalue
λ with corresponding eigenvector v1. Then {v1} can be extended to an ordered basis C of V by
Proposition 10.13 for which

[T ]C =

(
A B
0 C

)
where A is 1× 1, 0 is (n− 1)× 1, B is 1× (n− 1), and C is (n− 1)× (n− 1).

Assume that there exists an ordered basis B = (v1, . . . , vn) for which

[T ]B =

(
A B
0 C

)
where A is k × k upper triangular, 0 is (n− k)× k, B is k × (n− k), and C is (n− k)× (n− k).
Note that W = Span({v1, . . . , vk}) is T -invariant. As a result, we can define the linear operator
TW : W → W by TW (w) = T (w) for all w ∈ W . The characteristic polynomial of [T ]B is the
product of the characteristic polynomials of A and C. Since the characteristic polynomial of
T factors into linear terms, we can find an eigenvalue µ of the matrix C over F . Let w be a
corresponding eigenvector. Then

T

(
0
w

)
=

(
Bw
Cw

)
=

(
Bw
µw

)
.

By Proposition 10.13, the linearly independent set C ′ = {v1, . . . , vk, w} can be extended to an
ordered basis C for which

[T ]C =

(
A′ B′

0 C ′

)
where A′ is (k+1)×(k+1) upper triangular, 0 is (n−(k+1))×(k+1), B′ is (k+1)×(n−(k+1)),
and C ′ is (n− (k + 1))× (n− (k + 1)) We have proven recursively that there is an ordered basis
C = {v1, . . . , vn} for which [T ]C is upper triangular.
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Apply Gram-Schmidt to C to obtain an ordered orthonormal basis D = (u1, . . . , un). We let
Sk = {u1, . . . , uk} and S ′

k = {v1, . . . , vk}. Then Span(Sk) = Span(S ′
k) for all 1 ≤ k ≤ n. Further,

T (uk) ∈ Span(Sk) and T (vk) ∈ Span(S ′
k) for all 1 ≤ k ≤ n. We conclude [T ]D remains upper

triangular. □

Definition 23.3. Let V be an inner product space with linear operator T : V → V for which the
adjoint exists. Then T is normal if TT ∗ = T ∗T .

Proposition 23.4. Let V be an inner product space with normal linear operator T : V → V .

(i) ||T (v)|| = ||T ∗(v)|| for all v ∈ V .
(ii) T − cI is normal for all c ∈ F .
(iii) If v ∈ V is an eigenvector of T with corresponding eigenvalue λ ∈ F , then v is an eigenvector

of T ∗ with corresponding eigenvalue λ.
(iv) If λ1, λ2 ∈ F are distinct eigenvalues of T with corresponding eigenvectors v1, v2 ∈ V , then

v1 and v2 are orthogonal.
Proof.

(i) For all v ∈ V , we have

||T (v)||2 = ⟨T (v), T (v)⟩ = ⟨T ∗T (v), v⟩ = ⟨TT ∗(v), v⟩ = ⟨T ∗(v), T ∗(v)⟩ = ||T ∗(v)||2.
(ii) By Proposition 22.7 and the normality of T ,

(T − cI)(T − cI)∗ = (T − cI)(T ∗ − cI) = TT ∗ − cT − cT ∗ + ||c||2I = T ∗T − cT − cT ∗ + |c|2I
= (T ∗ − cI)(T − cI) = (T − cI)∗(T − cI).

(iii) Suppose that T (v) = λv for some v ∈ V . Let U = T − λI so U(v) = 0 and U is normal by
(ii). Thus (i) and Proposition 22.7 imply

0 = ||U(v)|| = ||U∗(v)|| = ||(T ∗ − λI)(v)|| = ||T ∗(v)− λv||.

By Proposition 19.10(ii), T ∗(v) = λv.
(iv) Let λ1 and λ2 be distinct eigenvalues of T with corresponding eigenvectors v1 and v2

respectively. By (iii),

λ1⟨v1, v2⟩ = ⟨λ1v1, v2⟩ = ⟨T (v1), v2⟩ = ⟨v1, T ∗(v2)⟩ = ⟨v1, λ2v2⟩ = λ2⟨v1, v2⟩.

Since λ1 ̸= λ2, ⟨v1, v2⟩ = 0.

□

Theorem 23.5 (Spectral Theorem for Normal Operators). Let V be a finite dimensional complex
inner product space with T : V → V a linear operator. Then T is normal if and only if there exists
an orthonormal basis for V consisting of eigenvectors of T .

Proof. (⇒) Suppose that T is normal. By the Fundamental Theorem of Algebra, the characteristic
polynomial of T factors into linear terms. Apply Schur’s Theorem to obtain an orthonormal basis
B = (u1, . . . , un) for V such that [T ]B is upper triangular.

We will prove that each ui is an eigenvector of T via induction. Note that u1 is an eigenvector
of T by construction. Assume that u1, . . . , uk−1 are eigenvectors of T . We will show that uk is
also an eigenvector of T . For j < k, let λj ∈ F be the eigenvalue corresponding to uj. Since

[T ]B is upper triangular, T (uk) =
∑k

i=1Aikui. By Theorem 21.3(ii), Proposition 23.4(iii), and the
orthonormality of B,

Aik = ⟨T (uk), ui⟩ = ⟨uk, T
∗(ui)⟩ = ⟨uk, λiui⟩ = λi⟨uk, ui⟩ = 0.

for 1 ≤ i ≤ k − 1. Thus T (uk) = Akkuk, and uk is an eigenvector of T .
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(⇐) Assume that there exists an orthonormal basis B for V consisting of eigenvectors of T .
Then [T ]B is diagonal. By Proposition 22.8, [T ∗]B = [T ]∗B is the conjugate transpose of a diagonal
matrix. Thus [T ∗]B is also diagonal. We conclude that T and T ∗ commute. □

Definition 23.6. Let V be an inner product space with linear operator T : V → V for which the
adjoint exists. Then T is self-adjoint if T = T ∗.

Remark 23.7. A self-adjoint linear operator T is automatically normal since TT ∗ = T 2 = T ∗T .

Lemma 23.8. Let V be a finite dimensional inner product space with self-adjoint linear operator
T : V → V .

(i) Every eigenvalue of T is real.
(ii) Suppose V is a real inner product space. Then the characteristic polynomial of T factors

into linear terms.
Proof.

(i) Suppose that T (v) = λv for non-zero v ∈ V and λ ∈ C. Since T is normal, Proposition
23.4(iii)

λv = T (v) = T ∗(v) = λv.

Thus λ = λ and λ is real.
(ii) Let n = dim(V ) with B an orthonormal basis for V . Denote A = [T ]B, which is a real

symmetric matrix. Define TA : Cn → Cn by TA(v) = Av for v ∈ Cn. Since TA is represented
by a real symmetric matrix, TA is self-adjoint over the complex inner product space Cn.
Let f(t) be the characteristic polynomial of TA. By the Fundamental Theorem of Algebra,
f(t) factors as a product of terms of the form (t − λ). Each λ is a root of f and, thus,
an eigenvalue of TA. By (i), λ is real. Therefore, f(t) factors as a product of linear terms
over the real numbers. The characteristic polynomial of T is the same as the characteristic
polynomial of TA.

□

Theorem 23.9 (Spectral Theorem for Self-Adjoint Operators). Let V be a finite dimensional real
inner product space with linear operator T : V → V . Then T is self-adjoint if and only if there
exists an orthonormal basis for V consisting of eigenvectors of T .

Proof. (⇒) Suppose T is self-adjoint. By Lemma 23.8(ii), the characteristic polynomial of T factors
into linear terms. Apply Schur’s Theorem to obtain an orthonormal basis B for V such that [T ]B
is upper triangular. We have [T ]∗B = [T ∗]B = [T ]B so [T ]B and [T ]∗B are upper triangular. Since
[T ]∗B is the conjugate transpose of [T ]B, we conclude that [T ]B is diagonal. Therefore, each vector
in the basis B is an eigenvector.
(⇐) Assume there exists an orthonormal basis B = (u1, . . . , un) for V consisting of eigenvectors

of T . Let λi be the eigenvalue corresponding to the eigenvector ui. Then [T ]B is a diagonal matrix
with λi in the ith diagonal position. By Proposition 22.8, [T ∗]B = [T ]∗B. The entry in the ith
diagonal of [T ∗]B is λi by Proposition 23.4(iii). However, λi is real so [T ∗]B = [T ]B. We conclude
that T = T ∗, and T is self-adjoint. □
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